Five classic components

- I am like a control tower
- I am like a pack of file folders
- I am like a conveyor belt + service stations
- I exchange information with the outside world
Binary arithmetic

- (Sounds scary)

- So far we studied
 - Instruction set architecture basic
 - MIPS architecture & assembly language

- We will review binary arithmetic algorithms and their implementations

- Binary arithmetic will form the basis for CPU’s datapath design

Binary number representations

- We looked at how to represent a number (in fact the value represented by a number) in binary
 - Unsigned numbers – everything is positive

- We will deal with more complicated cases
 - Negative numbers
 - Real numbers (a.k.a. floating-point numbers)
Unsigned Binary Numbers

- Limited number of binary numbers (patterns of 0s and 1s)
 - 8-bit number: 256 patterns, 00000000 to 11111111
 - in general, there are \(2^N \) bit patterns, where \(N \) is bit width
 - 16 bit: \(2^{16} = 65,536 \) bit patterns
 - 32 bit: \(2^{32} = 4,294,967,296 \) bit patterns

- Unsigned numbers use patterns for 0 and positive numbers
 - 8-bit number range \([0..255]\) corresponds to
 - 00000000 0
 - 00000001 1
 - … …
 - 11111111 255
 - 32-bit number range \([0..4,294,967,295]\)
 - in general, the range is \([0..2^{N}-1]\)

Binary addition
- \(0 + 0 = 0, \text{ carry} = 0 \) (no carry)
- \(1 + 0 = 1, \text{ carry} = 0 \)
- \(0 + 1 = 1, \text{ carry} = 0 \)
- \(1 + 1 = 0, \text{ carry} = 1 \)

Binary subtraction
- \(0 - 0 = 0, \text{ borrow} = 0 \) (no borrow)
- \(1 - 0 = 1, \text{ borrow} = 0 \)
- \(0 - 1 = 1, \text{ borrow} = 1 \)
- \(1 - 1 = 0, \text{ borrow} = 0 \)
Unsigned Binary Numbers

- Binary arithmetic is straightforward
- Addition: Just add numbers and carry as necessary
- Consider adding 8-bit numbers:

```
01001111x  1101111x   carry
01101011    107d      11101011   235d  carry overflowed
+ 01001101    77d      + 01001101    77d  ----
---------- ----
10111000  312d
```

legal number: betw. 0 and 255

- Subtraction: Just subtract and borrow as necessary
- Consider subtracting 8-bit numbers:

```
111
01101011  107d
- 01001101  77d
---------- ----
00011110  30d
```

legal number: betw. 0 and 255

```
0011111110  312d
```

illegal number: overflowed 8 bits

(i.e., “borrow overflow”)
Unsigned Binary to Decimal

- How to convert binary number?
 - First, each digit is position \(i \), numbered right to left
 - e.g., for 8-bit number: \(b_7b_6b_5b_4b_3b_2b_1b_0 \)

- Now, we just add up powers of 2
 - \(b_0 \times 2^0 + b_1 \times 2^1 + b_2 \times 2^2 + \ldots + b_7 \times 2^7 \)

- An example
 \[
 1011 \ 0111 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0
 \]
 \[
 = 1 + 2 + 4 + 0 + 16 + 32 + 0 + 128
 \]
 \[
 = 183_{10}
 \]

- \(v = \sum (b_i \times 2^i) \), where \(0 \leq i \leq K-1 \), where \(K = \# \text{ bits} \), \(i \) is bit posn

Unsigned Binary Numbers in MIPS

- MIPS instruction set provides support
 - addu $1,$2,$3 - adds two unsigned numbers ($2, 3$)
 - addiu $1,$2,10 - adds unsigned number with signed immediate
 - subu $1,$2,$3 - subtracts two unsigned numbers
 - etc.

- Primary issue: The carry/borrow out is ignored
 - Overflow is possible, but it is ignored
 - Signed versions take special action on overflow (we’ll see shortly!)

- Unsigned memory accesses: lbu, lhu
 - Loaded value is treated as unsigned number
 - Convert from smaller bit width (8 or 16) to a 32-bit number
 - Upper bits in the 32-bit destination register are set to 0s
Important 7-bit Unsigned Numbers

- American Standard Code for Information Interchange (ASCII)
 - Developed in early 60s, rooted in telecomm
 - Maps 128 bit patterns (2^7) into control, alphabet, numbers, graphics
 - Provides control values present in other important codes (at the time)
 - 8th bit might be present and used for error detection (parity)

- Control: Null (0), Bell (7), BS (8), LF (0A), CR (0D), DEL (7F)
- Numbers: (30-39)
- Alphabet: Uppercase (41-5A), Lowercase (61-7A)
- Other (punctuation, etc): 20-2F, 3A-40, 5E-60, 7B-7E

- Unicode: A larger (8,16,32 bit) encoding; backward compatible with ASCII

Signed Numbers

- How to represent positive and negative numbers?

- We still have a limited number of bit patterns
 - 8-bit: 256 bit patterns
 - 16 bit: $2^{16} = 65,536$ bit patterns
 - 32 bit: $2^{32} = 4,294,967,296$ bit patterns

- Re-assign bit patterns differently
 - Some patterns are assigned to negative numbers, some to positive

- Three ways
 - Sign magnitude, 1’s complement, 2’s complement
Method 1: sign-magnitude

- Same method we use for decimal numbers
- \{sign bit, absolute value (magnitude)\}
 - Sign bit (msb): 0 – positive, 1 – negative
 - Examples, assume 4-bit representation
 - 0000 – +0
 - 0011 – +3
 - 1001 – -1
 - 1111 – -7
 - 1000 – -0 (two 0’s???)
- Properties
 - Two 0s – a positive 0 and a negative 0?
 - Equal # of positive and negative numbers
 - A + (-A) does not give zero!
 - Consider sign during arithmetic

Sign-magnitude

- Let’s check A + (-A) is not zero
- Consider N = 5 bits number. Zero is 00000 or 10000.
- Try this: -4 + 4 = ?????

-4 is 10100
4 is 00100

so, let’s add them together:

10100 -4d
+ 00100 4d
-------- --
11000 -8d YIKES!
Method 2: one’s complement

- Negation of +X is \((2^N - 1) - X\), where N is number of bits
 - \(A + (-A) = 2^N - 1\) (i.e., \(-0\))
 - Given a number A, its negation is done by \((111...111 - A)\)
 - In fact, simple bit-by-bit inversion will give the same-magnitude number with a different sign
 - Examples, assume 4-bit representation
 - 0000 \(^\wedge\)
 - 0011
 - 1001
 - 1111
 - 1000

- **Properties**
 - There are two 0s
 - There are equal # of positive and negative numbers
 - \(A + (-A) = 0\) (whew!) but... \(A + 0 = A\) only works for +0 (try it with -0!)
 - 2 step process for subtraction (accounts for "carry out")

One’s Complement

- Negation of \(X (2^N - 1) - X\), positive are usual value
- Consider \(N=4\)

<table>
<thead>
<tr>
<th>Binary</th>
<th>One’s</th>
<th>Binary</th>
<th>One’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>-7</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1001</td>
<td>-6</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>1010</td>
<td>-5</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>1011</td>
<td>-4</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>1100</td>
<td>-3</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>1101</td>
<td>-2</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>1110</td>
<td>-1</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>1111</td>
<td>0</td>
</tr>
</tbody>
</table>

notice how the counting works: 1111 is \(-0\) then \(-1\) \(-2\) etc.
One’s Complement

- Let’s check the “0 property”: \(A + (-A) = 0 \)
- Suppose \(A = 5 \)

5 is 0101
negation of 5 is \((2^4 - 1) - 5 = (16 - 1) - 5 = 11 - 5 = 10\)
10 (unsigned) is 1010
check the table: 1010 is -5 in 1’s complement
now, let’s try 5 + (-5) in 1’s complement

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>5</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>+ 1010</td>
<td>-5</td>
<td>+ 0000 (+0)</td>
<td>(+10)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1111</td>
<td>-0</td>
<td>1010 (-5)</td>
<td>(-6)</td>
</tr>
</tbody>
</table>

Method 3: two’s complement

- Negation is \((2^N - X)\)
 - \(A + (-A) = 2^N \)
 - Given a number \(A \), it’s negation is done by \((1111...1111 - A) + 1\)
 - In fact, simple bit-by-bit inversion followed by adding 1 will give the same-magnitude number with a different sign
 - Examples, assume 4-bit representation
 - 0000
 - 0011
 - 1001
 - 1111
 - 1000
 - Properties
 - There is a single 0
 - There are unequal # of positive and negative numbers
 - Subtraction is simplified - one step based on addition (we’ll see! 😊)
Two’s Complement

- Negation of X \(2^N - X\), positive are usual value
- Consider \(N=4\)

<table>
<thead>
<tr>
<th>Binary</th>
<th>One’s</th>
<th>Binary</th>
<th>One’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>-8</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1001</td>
<td>-7</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>1010</td>
<td>-6</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>1011</td>
<td>-5</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>1101</td>
<td>-3</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>1110</td>
<td>-2</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>1111</td>
<td>-1</td>
</tr>
</tbody>
</table>

notice how the counting works: 1000 is -8... 1001 is -7... etc.

Two’s Complement

- Let’s check the “0 property”: \(A + (-A) = 0\)
- Suppose \(A = 5\)

5 is 0101
- negation of 5 is \(2^4 - 5 = 16 - 5 = 11\)
- 11(unsigned) is 1011
- check the table: 1011 is -5 in 2’s complement
- now, let’s try \(5 + (-5)\) in 2’s complement

<table>
<thead>
<tr>
<th></th>
<th>0101</th>
<th>0111 (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-5</td>
<td>0000 (0)</td>
</tr>
<tr>
<td>+ 1011</td>
<td>-5</td>
<td>+ 0001 (1)</td>
</tr>
</tbody>
</table>

10000 0 1011 (-5) 1000 (-8)
Two’s Complement

- Negation: \((2^8 - X)\) vs. \((11111111 - X) + 1\)
- Note \(2^8\) needs 9 bits:
 - \(2^8\) is 256, from earlier conversion process: \(10000000 = 1 \times 2^8\)
- Whereas the other form has only 8 bits. Let’s try it!
 - Consider \(X = 10\) and we want to find \(-10\)
 \[
 \begin{array}{c}
 \text{1111 1111} \\
 \hline
 - \text{0000 1010 (10d)}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \hline
 1111 0101 (-11d)
 \end{array}
 \]
 \[
 + 1
 \]
 \[
 \begin{array}{c}
 \hline
 1111 0110 (-10d)
 \end{array}
 \]
 Oh, cool! That’s just flipping bits!

Two’s Complement

- How to convert binary 2’s complement number?
 - Same as before, except most significant bit is “sign”
- Consider an 8-bit 2’s complement number
 - \(b_7 \times 2^0 + b_6 \times 2^1 + b_5 \times 2^2 + \ldots + b_0 \times (-2^7)\)
- An example
 \[
 \begin{align*}
 \text{1011 0111} \\
 &= 1 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 + 1 \times 2^4 + 1 \times 2^5 + 0 \times 2^6 + 1 \times (-2^7) \\
 &= 1 + 2 + 4 + 0 + 16 + 32 + 0 + (-128) \\
 &= -73\\
 \end{align*}
 \]
 - What is \(73\) in 2’s complement binary number?
 \[\nu = (\sum (b_i \times 2^i)) + b_K \times (-2^{K-1}),\]
 where \(0 \leq i < K-1\), where \(K = \#\) bits, \(i\) is bit posn
Summary

<table>
<thead>
<tr>
<th>Code</th>
<th>Sign-Magnitude</th>
<th>1's Complement</th>
<th>2's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
</tr>
<tr>
<td>001</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>010</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>011</td>
<td>+3</td>
<td>+3</td>
<td>+3</td>
</tr>
<tr>
<td>100</td>
<td>-0</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>101</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>110</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>111</td>
<td>-3</td>
<td>-0</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Issues
 - # of zeros
 - Balance
 - Arithmetic algorithm implementation