Introduction

- **Motivation from the clinical domain** (Hames '13)
 - Preventable Medical errors are estimated to be approx. 210k-440k patients/year
 - This is the third leading causes of death in America

Objective

- Model a conditional joint distribution \(P(y|x) \) of clinical actions \(y = \{y_1, \ldots, y_d\} \) (output)
 - for given patient condition \(x = \{x_1, \ldots, x_k\} \) (input)
- Learn a function that assigns to each patient condition \(x \), the most probable \(MAP \) assignment of the clinical actions \(y \)
- **Challenge**: The number of all possible class assignments is exponential in \(d \) \(= |Y| \)
- **Solutions** (**indicates our contributions**)

Phase 1: Multi-dimensional Data Modeling of Clinical Records

- **Graphical Representation** (e.g., \(d = 4 \))
- **Mathematical Representation**
 \[P(Y|X) = \prod_{i=1}^{d} P(y_i|x_i, \pi(x_i)) \]
 \[Y = \{1, \ldots, d\}; \pi(x_i) = \text{all preceding labels (tree)} \]
- **Graphical Structure**
 - *Structure learning is not required (fast)*
 - *Optimal tree structures are learned efficiently*
 - *Theoretically, CC does not lose any class dependency (chain rule)*
- **Weakness**
 - *BR disregards all the class dependencies*
 - *It is a simple collection of marginal models*
 - *The dependency can be learned limited to a tree structure*
 - *Learning the optimal structure is NP-hard*
 - *A greedy approx. is used*

Phase 2: Estimating Anomaly Scores

- **Objective**
 - Given a trained model and unseen test data, precisely measure the degree of anomaly based on the conformity between the model and test data
 - MDC models transform the data into probabilistic estimations
 - Proper estimate of anomaly score on these probabilities will let us correctly identify the anomalous clinical actions
 - **Caveat**: Blindly picking the minimum probability will not satisfy our needs; e.g., prescriptions with alternative drugs
- **Solutions**
 - *The complementary probability*
 \[Score_{2} = 1 - P(y|x) \]
 - *Rank percentile of the probability*
 \[Score_{2} = \text{Rank}(P(y|x)) / N_{test} \]
- **Multivariate Approach**
 - *Robust Mahalanobis Distance* (Rousseeuw and Durenre, 90)
 \[Score_{C} = \sqrt{[\text{MCD}(x)]} \]
 - *M. minimum covariance determinant (MCD) mean of \(\phi \) (\(\phi \) = \{\phi_1, \ldots, \phi_d\}) over test data*
 \[Score_{C} = \text{Rank}(\phi) \] \[Score_{C} = \text{Rank}(\phi) \]
 - *Core Vector (Duin et al. 97)*
 \[Score_{C} = \text{Rank}(\phi) \]
- **Multivariate Conditional Approach**
 - *One-class SVM* (Ras and Dua 04)
 - *Support Vector Data Description* (Tax and Duin 04)
 - Using these schemes as basic building blocks, we are working on new anomaly scoring techniques

Quantities Involved in Scoring

Scoring Scheme

Univariate Approach

- The complementary probability
 \[Score_{1} = 1 - P(y|x) \]
- Rank percentile of the probability
 \[Score_{2} = \text{Rank}(P(y|x)) / N_{test} \]

Multivariate Approach

- *Robust Mahalanobis Distance* (Rousseeuw and Durenre, 90)
 \[Score_{C} = \sqrt{[\text{MCD}(x)]} \]
 - *M. minimum covariance determinant (MCD) mean of \(\phi \) (\(\phi \) = \{\phi_1, \ldots, \phi_d\}) over test data*
 \[Score_{C} = \text{Rank}(\phi) \]
- *Core Vector (Duin et al. 97)*
 \[Score_{C} = \text{Rank}(\phi) \]
- *Support Vector Data Description* (Tax and Duin 04)
 - Using these schemes as basic building blocks, we are working on new anomaly scoring techniques

Experimental results

- **Data**: Progress notes obtained from Cincinnati Children’s Hospital Medical Center (Poislpan et al. 07)
 - 978 instances (patients)
 - X: 1,449 features; Freehand notes in the bag-of-words representation
 - Y: 45 binary classes; Indicating the diseases diagnosed

Compared methods

1. Modified Classifier Chain + Robust Mahalanobis (CC.mod+RDist)
2. Conditional Tree BN + Robust Mahalanobis (CTBN+RDist)
3. Binary relevance + complementary probability (BR+comP)

- 10-fold cross validation; On each round, 15% of randomly selected test data are perturbed (anomalies) by flipping 1-5 class labels
- Anomalies represent mistaken diagnoses
- **Metric**: Area under an ROC curve (AUC)