CS2310 Software Engineering

Final Project Report

by

Strasa Acimovic

Spring 2006

Project Description

This project became something I didn't expect in many ways. My initial proposal was to translate some java strings in an existing project into XML. Upon learning this and doing research my project definition started including current XML messaging standards, eventually the Jabber supported XMPP protocols, and finally Jabber servers and clients. This changed from a simple code alteration to a more research intensive project with possibilities for future study.

Project Progress

The project progressed through several stages.

1. VC analysis

The first step was to get the current VC code and study it. I pulled it apart, identified its messaging structures, and began to study how to translate XML parsing in java.

2. XML Parsing in Java

The first portion of the project I began to study the Java XML native libraries, and realized that I needed more powerful tools in order to manipulate the language. I chose to use the http://www.jdom.org/ JDOM libraries for this. I taught myself their codebase and began to work on a VC translation.

3. XML Messaging Protocol

There already exists a widely used XML messaging protocol called XMPP. The Jabber client (used by many people) is built upon it and its recent popularity has skyrocketed as its implementation in the famous GoogleTalk has been used. Although I discussed using this with some of my classmates, the go-ahead was given to begin pursuing this implementation.

4. XMPP Libraries

To accomplish my new goals I had to study the libraries provided for jabber, and upon discussion again with a few of my classmates I decided on the jabber SMACK api. The upshot of this was that it was easy to use, high level (making future projects or modifications easy), and intuitive as well as open under the GPL. The SMACK api folks provided a server (Wildfire) and a client (SPARK) but only Wildfire was open source. David pursued that as his server source, but I had to find a different implementation that I could use for my project.

5. Jbother

Jbother is an existing Open Source project that implements the smack API. I pulled it to my ends and began studying it extensively since at this point I was looking forward to the future. I was hoping to establish this as a possible launching pad for further projects.

Current Status

The current incarnation of the project is fairly close to the Jbother implementation. One of the primary goals of the project were to establish classroom like chat rooms that provide certain functionalities (person-to-person chat, classrooms that only allow in registered students, status indicated by smilies, and group chat). I worked with David to insure that our current code generation enables all this and provides a platform for future expandibility.

Directions

Simply extract the folder (using the tar -xzvf command in unix). You can build from source using the ant command in the top level. The source code is provided in /src/valhalla/. Authentication and user registration can be done directly from the client – no external web-sign up is necessary.

Plugins

I haven't had much time to work with the plugins yet, but the jbother forums are very active and the creator is quick to answer emails.

All plugins are jar files. In the jar root, there needs to be a file called "plugin.properties" that contains information about the plugin. Here is an example for the SysTrayPlugin:

mainClass = com.valhalla.jbother.plugins.SystrayPlugin

description = Adds system tray icon for Linux

name = Systray Plugin

APIVersion = 91212

version = 0.0.2b

author = Yury Soldak

releaseDate = Jan 10, 2005

os = Linux

arch = i386

The main class needs to implement the Plugin interface (documentation here). If you want to listen for events, you also need to implement the PluginEventListener interface (documentation here). To listen for events, add the plugin to the plugin chain in the plugin's init() method. An exmaple is this:

/**

 * Initializes plugin

 * @return true on success

 */

public boolean init()

{

 PluginChain.addListener(this);

 initComponents();

 com.valhalla.Logger.debug("Systray plugin initiated");

 return true;

}

All events are recieved by all plugins, so you just need to test for the type of event like so:

/**

 * Handles StatusChangedEvent

 * @param event One of plugin events

 */

public void handleEvent(PluginEvent event)

{

 if (event instanceof StatusChangedEvent)

 {

 // do whatever we need to when the status has changed

 }

 else if(event instanceof ConnectEvent)

 {

 connectionHandler((ConnectEvent)event);

 }

 else if(event instanceof ExitingEvent)

 {

 exitingHandler((ExitingEvent)event);

 }

}

A list of available events that can be captured are here. I've just been adding events as needed, so if you need one that's not there, let me know and I'll write it.

The plugin must remove itself from the plugin chain and totally clean itself up in the unload() method. This makes it so that the plugins can be dynamically unloaded/loaded/upgraded.

Take a look at the api documentation for more information.

Future Work

Between the provided code, backwards compatibility of the Jabber api (and XMPP) and the possibility of plugins and backend broadcasts – it looks like the new Jbother based VC project has a very component-based expansive future.

