Introduction to High Performance Computing
CS1645 / CS2045
University of Pittsburgh
Department of Computer Science

Instructor: Bryan Mills, PhD
Email: bmills@cs.pitt.edu
Office: Sennott Square 6148
Office Hours: Wed. 4-5pm, Tues. 6-7pm.

TA: Rakan Alseghayer
Email: raa88@pitt.edu
Office: TBD
Office Hours: TBD

Schedule: Class meets Monday and Wednesday 6:00-7:15pm in Sennott Square 6110.

Goal
This course is an introduction to the architecture of and software techniques for parallel and high performance computing systems. The content includes fundamental architecture aspects of shared-memory and distributed-memory systems, as well as paradigms, algorithms and languages used to program parallel systems. Students will complete a number of projects demonstrating specific applications on parallel processing systems.

Resources
Other resources will be made available via the course website.

Prerequisites
This course has the following prerequisites:

- CS 449: Introduction to Systems Software.
- CS 1501: Algorithm Implementation.

The programming assignments assume the student is familiar with the C programming language and basic unix skills.
Topics

- High performance computing systems
- Parallel programming patterns
- Multiprocessor architectures
- Cache coherence in symmetric multiprocessors
- Shared-memory programming with OpenMP
- Accelerators programming with OpenMP extensions
- Models of parallel processing
- Performance metrics
- Distributed-memory programming with MPI
- Parallel algorithms
- Map Reduce

Grading

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework/Assignments & CS2045 Project</td>
<td>50%</td>
</tr>
<tr>
<td>Mid-term</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

Policy on Cheating

The highest academic integrity standard is expected from every student in this course. The solutions to all the assignments and examinations in this course should be the result of the student's individual effort. Presenting the words or ideas of somebody else under your name hinders your skills in problem solving and violates the university's policy on academic integrity (http://www.provost.pitt.edu/info/ai1.html). Cheating on an exam or plagiarizing a homework will result in a score of “0” for all the students involved. Multiple violations to this policy will result in a final grade “F” in the course.

Students with Disability

Contact the Office of Disability Resources and Services, 216 William Pitt Union (412-648-7890), as soon as possible in the term. They will determine a reasonable accommodation for this course.