
Shadows on the Cloud: An energy-aware, profit maximizing resilience
framework for cloud computing

Xiaolong Cui, Bryan Mills, Taieb Znati and Rami Melhem
Department of Computer Science, University of Pittsburgh, Pittsburgh, U.S.A ∗

{mclarencui,bmills,znati,melhem}@cs.pitt.edu

Keywords: shadow replication, fault tolerance, scheduling, resilience, energy-aware

Abstract: As the demand for cloud computing continues to increase, cloud service providers face the daunting challenge
to meet the negotiated SLA agreement, in terms of reliability and timely performance, while achieving cost-
effectiveness. This challenge is increasingly compounded by the increasing likelihood of failure in large-
scale clouds and the rising cost of energy consumption. This paper proposes Shadow Replication, a novel
profit-maximization resiliency model, which seamlessly addresses failure at scale, while minimizing energy
consumption. The basic tenet of the model is to associate a suite of shadow processes to execute concurrently
with the main process, but initially at a much reduced execution speed, to overcome failures as they occur.
Two computationally-feasible schemes are proposed to achieve shadow replication. A performance evaluation
framework is developed to analyze these schemes and compare their performance to traditional replication-
based fault tolerance methods, focusing on the inherent tradeoff between fault tolerance, the specified SLA
and profit maximization. The results show Shadow Replication leads to significant energy reduction, and is
better suited for compute-intensive execution models, where up to 30% more profit increase can be achieved.

1 INTRODUCTION

Cloud Computing has emerged as an attractive plat-
form for increasingly diverse compute- and data-
intensive applications, as it allows for low-entry costs,
on demand resource provisioning and allocation and
reduced cost of maintaining internal IT infrastruc-
ture (Tchana et al., 2012). Cloud computing will con-
tinue to grow and attract attention from commercial
and public market segments. Recent studies predict
annual growth rate of 17.7 percent by 2016, making
cloud computing the fastest growing segment in the
software industry.

In its basic form, a cloud computing infrastructure
is a large cluster of interconnected back-end servers
hosted in a datacenter and provisioned to deliver
on-demand, ”pay-as-you-go” services and comput-
ing resources to customers through a front-end inter-
face (Amazon, 2013). As the demand for cloud com-
puting accelerates, cloud service providers (CSPs)

∗This research is based in part upon work supported
by the National Science Foundation under Grant Number
CNS12-53218 and CNS12-52306. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

will be faced with the need to expand their underly-
ing infrastructure to ensure the expected levels of per-
formance, reliability and cost-effectiveness, resulting
in a multifold increase in the number of computing,
storage and communication components in their dat-
acenters. The direct implication of large datacenters
is increased management complexity and propensity
to failure. While the likelihood of a server failure is
very small, the sheer number of computing, storage
and communications components that can fail, how-
ever, is daunting. At such a large scale, failure be-
comes the norm rather than an exception (Schroeder
and Gibson, 2010).

As the number of users delegating their comput-
ing tasks to CSPs increases, Service Level Agree-
ments (SLAs) become a critical aspect for a sustain-
able cloud computing business model. In its basic
form, an SLA is a contract between the CSPs and
consumers that specifies the terms and conditions un-
der which the service is to be provided, including ex-
pected response time and reliability. Failure to deliver
the service as specified in the SLA subjects the CSP
to pay a penalty, resulting in a loss of revenue.

In addition to penalties resulting from failure to
meet the SLA requirement, CSPs face rising energy
costs of their large-scale datacenters. It is reported

that energy costs alone could account for 23-50%
of the expenses (Elnozahy et al., 2003) and this bill
mounts up to $30 billion worldwide (Raghavendra
et al., 2008). This raises the question of how fault
tolerance might impact power consumption and ulti-
mately the expected profit of the service providers.

Current fault tolerance approaches rely upon ei-
ther time or hardware redundancy in order to tolerate
failure. The first approach, which uses time redun-
dancy, requires the re-execution of the failed task af-
ter the failure is detected. Although this can further
be optimized by the use of checkpointing and roll-
back recovery, such an approach can result in a sig-
nificant delay increase subjecting CSPs to penalties,
when SLA terms are violated, and high energy costs
due to re-execution of failing tasks.

The second approach exploits hardware redun-
dancy and executes multiple instances of the same
task in parallel to overcome failure and guarantee that
at least one task reaches completion. This approach,
which has been used extensively to deal with fail-
ure in critical applications, is currently used in cloud-
computing to provide fault tolerance while hiding the
delay of re-execution (Tsai et al., 2011; Ko et al.,
2010). This solution, however, increases the energy
consumption for a given service, which in turn might
outweigh the profit gained by providing the service.
The trade-off between profit and fault-tolerance calls
for new frameworks to take both SLA requirements
and energy awareness in dealing with failures.

In this paper, we address the above trade-off chal-
lenge and propose an energy-aware, SLA-based profit
maximization framework, referred to as “Shadow
Replication”, for resilience in cloud computing. Sim-
ilar to traditional replication, Shadow Replication en-
sures successful task completion by concurrently run-
ning multiple instances of the same task. Contrary
to traditional replication, however, Shadow Replica-
tion executes the main instance of the task at the
speed required to maximize profit and uses dynamic
voltage and frequency scaling (DVFS) to slow down
the execution of the replicas, thereby enabling a pa-
rameterized trade-off between response time, energy
consumption and hardware redundancy. This allows
CSPs to maximize the expected profit by accounting
for income, potential penalties and energy cost.

The main challenge of Shadow Replication re-
sides in determining jointly the execution speeds of
all task instances, both before and after a failure oc-
curs, with the objective to minimize energy and max-
imize profit. In this paper, we propose a reward-based
analytical framework to achieve this objective. The
main contributions of this paper are as follows:

• An energy-aware, SLA-based, profit maximiza-

tion execution model, referred to as “Shadow
Replication”, for resilient cloud computing.

• A profit-based optimization model to explore the
applicability of Shadow Replication to cloud com-
puting, and to determine the optimal speeds of all
task instances to maximize profit.

• In environments where either the specification or
the detection of failure is hard to achieve, we
propose a sub-optimal, yet practical resilience
scheme, called profit-aware stretched replication.

• An evaluation framework to analyze profit and en-
ergy savings achievable by Shadow Replication,
compared to existing resilience methods.

The analysis shows that in all cases, Shadow
Replication outperforms existing fault tolerance
methods. Furthermore, shadow replication would
converge to traditional replication, when target re-
sponse time is stringent, and to re-execution when tar-
get response time is relaxed or failure is unlikely, as
expected.

The rest of the paper is organized as follows. We
begin by describing a computing model typically used
in cloud computing for compute- and data-intensive
applications in Section 2. We then introduce the
Shadow Replication framework in Section 3. Section
4, 5, and 6 present our analytical models and opti-
mization problem formalization, followed by experi-
ments and evaluation in section 7. Section 8 briefly
surveys related work. Section 9 concludes this work.

2 CLOUD WORKLOAD
CHARACTERIZATION

Cloud computing workload ranges from business
applications and intelligence, to analytics and social
networks mining and log analysis, to scientific ap-
plications in various fields of sciences and discov-
ery. These applications exhibit different behaviors,
in term of computation requirements and data ac-
cess patterns. While some applications are compute-
intensive, others involve the processing of increas-
ingly large amounts of data. The scope and scale
of these applications are such that an instance of a
job running one of these applications requires the
sequential execution of multiple computing phases;
each phase consists of thousands, if not millions, of
tasks scheduled to execute in parallel and involves the
processing of a very large amount of data (Lin and
Dyer, 2010; Ferdman and et. al., 2012). This model
is directly reflective of the MapReduce computational
model, which is predominately used in Cloud Com-

puting (Sangroya et al., 2012). An instance of this
model, is depicted in Figure 1.

Start

task 1

task 2

task 3

task N

Merge

task 1

task 2

task 3

task N

.

.

.

End

Phase 1 Phase 2

.

.

.

Figure 1: Cloud computing execution model with 2 phases.

Each job has a targeted response time defined by
the terms of the SLA. Further, the SLA defines the
amount to be paid for completing the job by the tar-
geted response time as well as the penalty to be in-
curred if the targeted response time is not met.

Each task is mapped to one compute core and ex-
ecutes at a speed, σ. The partition of the job among
tasks is such that each task processes a similar work-
load, W . Consequently, baring failures, tasks are ex-
pected to complete at about the same time. Therefore,
the minimal response time of each task, when no fail-
ure occurs, is tmin = W

σmax
, where σmax is the maxi-

mum speed. This is also the minimal response time of
the entire phase.

As the number of tasks increases, however, the
likelihood of a task failure during an execution of
a given phase increases accordingly. This under-
scores the importance of an energy-efficient fault-
tolerance model to mitigate the impact of a failing
task on the overall delay of the execution phase. The
following section describes Shadow Replication, a
fault-tolerant, energy-aware computational model to
achieve profit-maximizing, energy-efficient resiliency
in cloud computing.

3 SHADOW REPLICATION

The basic tenet of Shadow Replication is to associate
with each main process a suite of “shadows” whose
size depends on the “criticality” of the application and
its performance requirements, as defined by the SLA.

Formally, we define the Shadow Replication fault-
tolerance model as follows:

• A main process, Pm(W, σm), whose responsibility
is to executes a task of size W at a speed of σm;

• A suite of shadow processes, Ps(W, σs
b, σs

a) (1 ≤
s ≤ S), where S is the size of the suite. The
shadows execute on separate computing nodes.
Each shadow process is associated with two ex-
ecution speeds. All shadows start execution si-
multaneously with the main process at speed σs

b
(1≤ s≤ S). Upon failure of the main process, all
shadows switch their executions to σs

a, with one
shadow being designated as the new main pro-
cess. This process continues until completion of
the task.

To illustrate the behavior of Shadow Replication,
we limit the number of shadows to a single process
and consider the scenarios depicted in Figure 2, as-
suming a single process failure. Figure 2(a) represents
the case when neither the main nor the shadow fails.
The main process, executing at a higher speed, com-
pletes the task at time tm

c . At this time, the shadow
process, progressing at a lower speed, stops execution
immediately. Figure 2(b) represents the case when
the shadow fails. This failure, however, has no im-
pact on the progress of the main process, which still
completes the task at tm

c . Figure 2(c) depicts the case
when the main process fails while the shadow is in
progress. After detecting the failure of the main pro-
cess, the shadow begins execution at a higher speed,
completing the task at time ts

c . When possible, the
shadow execution speed upon failure must be set so
that ts

c does not exceed tm
c . Given that the failure rate

of an individual node is much lower than the aggre-
gate system failure, it is very likely that the main pro-
cess will always complete its execution successfully,
thereby achieving fault tolerance at a significantly re-
duced cost of energy consumed by the shadow.

A closer look at the model reveals that shadow
replication is a generalization of traditional fault toler-
ance techniques, namely re-execution and traditional
replication. If the SLA specification allows for flex-
ible completion time, shadow replication would take
advantage of the delay laxity to trade time redundancy
for energy savings. It is clear, therefore, that for a
large response time, Shadow Replication converges
to re-execution, as the shadow remains idle during
the execution of the main process and only starts ex-
ecution upon failure. If the target response time is
stringent, however, Shadow Replication converges to
pure replication, as the shadow must execute simulta-
neously with the main at the same speed. The flexi-
bility of the Shadow Replication model provides the
basis for the design of a fault tolerance strategy that
strikes a balance between task completion time and
energy saving, thereby maximizing profit.

Given that the probability of two individual nodes
executing the same instances of a task fail at the same

(a) No Failure

(b) Shadow Process Failure (c) Main Process Failure

Figure 2: Shadow replication for a single task and single replica

time is low, we will focus on the study of Shadow
Replication model with a single shadow. It is clear,
however, that the model can be extended to support
multiple processes, as required by the application’s
fault-tolerance requirement. Furthermore, we adopt
the fail-stop fault model, where a processor stops ex-
ecution once a fault occurs and failure can be detected
by other processes(Gärtner, 1999; Cristian, 1991).

4 REWARD BASED OPTIMAL
SHADOW REPLICATION

In this section, we describe a profit-based opti-
mization framework for the cloud-computing execu-
tion model previous described. Using this framework
we compute profit-optimized execution speeds by op-
timizing the following objective function:

max
σm,σb,σa

E[pro f it]

s.t.0≤ σm ≤ σmax

0≤ σb ≤ σm

0≤ σa ≤ σmax

(1)

We assume that processor speeds are continuous and
use nonlinear optimization techniques to solve the
above optimization problem.

In order to earn profit, service providers must ei-
ther increase income or decrease expenditure. We
take both factors into consideration for the purpose of
maximizing profit while meeting customer’s require-
ments. In our model, we set the expected profit to be
expected income minus expected expense.

E[profit] = E[income]−E[expense] (2)

4.1 Reward Model

The cloud computing SLA can be diverse and com-
plex. To focus on the profit and reliability aspects of

the SLA, we define the reward model based on job
completion time. Platform as a Service (PaaS) com-
panies will continue to become more popular caus-
ing an increase in SLAs using job completion time as
their performance metric. We are already seeing this
appear in web-based remote procedure calls and data
analytic requests.

As depicted in Figure 3, customers expect that
their job deployed on cloud finishes by a mean re-
sponse time tR1 . As a return, the provider earns a
certain amount of reward, denoted by R, for satisfy-
ing customer’s requirements. However, if the job can-
not be completed by the expected response time, the
provider loses a fraction of R proportional to the delay
incurred. For large delay, the profit loss may translate
into a penalty that the CSP must pay to the customer.
In this model, the maximum penalty P is paid if the
delay reaches or exceeds tR2 . The four parameters, R,
P, tR1 and tR2 , completely define the reward model.

There are two facts that the service provider must
take into account when negotiating the terms of the
SLA. The first is the response time of the main pro-
cess assuming no failure (Figure 2(a) and Figure
2(b)). This results in the following completion time:

tm
c =W/σm (3)

If the main process fails (shown in Figure 2(c)),
the task completion time by shadow process is the
time of the failure, t f , plus the time necessary to com-
plete the remaining work.

ts
c = t f +

W − t f ×σb

σa
(4)

This reward model is flexible and extensible; it is
not restricted to the form shown in Figure 3. In par-
ticular, the decrease may be linear, concave, or con-
vex and the penalty can extend to infinity. This model
can further be extended to take into consideration both
the short-term income and long-term reputation of the
service provider (Daw and Touretzky, 2002).

Figure 3: A reward function

4.2 Failure Model

Failure can occur at any point during the execution of
the main or shadow process. Our assumption is that
at most one failure occurs, therefore if the main pro-
cess fails it is implied that the shadow will complete
the task without failure. We can make this assump-
tion because we know the failure of any one node is
rare thus the failure of any two specific nodes is very
unlikely.

We assume that two probability density functions,
fm(t f) and fs(t f), exist which express the probabili-
ties of the main and shadow process failing at time
t f separately. The model does not assume a specific
distribution. However, in the remainder of this paper
we use an exponential probability density function,
fm(t f) = fs(t f) = λe−λt f , of which the mean time be-
tween failure (MTBF) is 1

λ
.

4.3 Power and Energy Models

Dynamic voltage and frequency scaling (DVFS) has
been widely exploited as a technique to reduce CPU
dynamic power (Flautner et al., 2002; Pillai and Shin,
2001). It is well known that one can reduce the
dynamic CPU power consumption at least quadrati-
cally by reducing the execution speed linearly. The
dynamic CPU power consumption of a computing
node executing at speed σ is given by the function
pd(σ) = σn where n≥ 2.

In addition to the dynamic power, CPU leakage
and other components (memory, disk, network etc.)
all contribute to static power consumption, which is
independent of the CPU speed. In this paper we define
static power as a fixed fraction of the node power con-
sumed when executing at maximum speed, referred
to as ρ. Hence node power consumption is expressed
as p(σ) = ρ× σn

max + (1− ρ)× σn. When the exe-
cution speed is zero the machine is in a sleep state,
powered off or not assigned as a resource; therefore it
will not be consuming any power, static or dynamic.
Throughout this paper we assume that dynamic power
is cubic in relation to speed (Rusu et al., 2003; Zhai

et al., 2004), therefore the overall system power when
executing at speed σ is defined as:

p(σ) =

{
ρσ3

max +(1−ρ)σ3 if σ > 0
0 if σ = 0

(5)

Using the power model given by Equation 5, the
energy consumed by a process executing at speed σ

during an interval T is given by

E(σ,T) = p(σ)×T (6)

Corresponding to Figure 2, there are three failure
cases to consider: main and shadow both succeed,
shadow fails and main fails. As described earlier, the
case of both the main and shadow failing is very rare
and will be ignored. The expected energy consump-
tion for a single task is then the weighted average of
the expected energy consumption in the three cases.

First consider the case where no failure occurs and
the main process successfully completes the task at
time tm

c , corresponding to Figure 2(a).

E1 =(1−
∫ tm

c

0
fm(t)dt)× (1−

∫ tm
c

0
fs(t)dt)×

(E(σm, tm
c)+E(σb, tm

c))

(7)

The first line is the probability of fault-free execution
of the main process and shadow process. Then we
multiple this probablity by the energy consumed by
the main and the shadow process during this fault free
execution, ending at tm

c .
Next, consider the case where the shadow process

fails at some point before the main process success-
fully completes the task, corresponding to Figure 2(b).

E2 =(1−
∫ tm

c

0
fm(t)dt)×∫ tm

c

0
(E(σm, tm

c)+E(σb, t))× fs(t)dt
(8)

The first factor is the probability that the main process
does not fail, and the probability of shadow fails is in-
cluded in the second factor which also contains the
energy consumption since it depends on the shadow
failure time. Energy consumption comes from the
main process until the completion of the task, and the
shadow process before its failure.

The one remaining case to consider is when the
main process fails and the shadow process must con-
tinue to process until the task completes, correspond-
ing to Figure 2(c).

E3 =(1−
∫ tm

c

0
fs(t)dt)×

∫ tm
c

0
(E(σm, t)+

E(σb, t)+E(σa, ts
c− t)) fm(t)dt

(9)

Similarly, the first factor expresses the probability
that the shadow process does not fail. In this case,

the shadow process executes from the beginning to
ts
c when it completes the task. However, under our

“at most one failure” assumption, the period during
which shadow process may fail ends at tm

c , since the
only reason why shadow process is still in execution
after tm

c is that main process has already failed. There
are three parts of energy consumption, including that
of main process before main’s failure, that of shadow
process before main’s failure, and that of shadow pro-
cess after main’s failure, all of which depend on the
failure occurrence time.

The three equations above describe the expected
energy consumption by a pair of main and shadow
processes for completing a task under different situ-
ations. However, under our system model it might
be the case that those processes that finish early will
wait idly and consume static power if failure delays
one task. If it is the case that processes must wait
for all tasks to complete, then this energy needs to be
accounted for in our model. The probability of this
is the probability that at least one main process fails,
referred to as the system level failure probability.

Pf = 1− (1−
∫ tm

c

0
fm(t)dt)N (10)

Hence, we have the fourth equation corresponding to
the energy consumed while waiting in idle.

E4 =(1−
∫ tm

c

0
fm(t)dt)× (1−

∫ tm
c

0
fs(t)dt)×

2Pf ×E(0, t j
c − tm

c)+
∫ tm

c

0
fs(t)dt×

(1−
∫ tm

c

0
fm(t)dt)×Pf ×E(0, t j

c − tm
c)

(11)

Corresponding to the first case, neither main process
nor shadow process fails, but both of them have to
wait in idle from task completion time tm

c to the last
task’s completion (by a shadow process) with proba-
bility Pf . Under the second case, only the main pro-
cess has to wait if some other task is delayed since its
shadow process has already failed. These two aspects
are accounted in the first and last two lines in E4 sep-
arately. We use the expected shadow completion time
t j
c as an approximation of the latest task completion

time which is also the job completion time.
By summing these four parts and then multiplying

it by N we will have the expected energy consumed by
Shadow Replication for completing a job of N tasks.

E[energy] = N× (E1 +E2 +E3 +E4) (12)

4.4 Income and Expense Models

The income is the reward paid by customer for the
cloud computing services that they utilize. It depends

on the reward function r(t), depicted in Figure 3, and
the actual job completion time. Therefore, the income
should be either r(tm

c), if all main processes can com-
plete without failure, or r∗(ts

c) otherwise. It is worth
noting that the reward in case of failure should be cal-
culated based on the last completed task, which we
approximate by calculating the expected time of com-
pletion allowing us to derive the expected reward, i.e.

r∗(ts
c) =

∫ tmc
0 r(ts

c)× fm(t)dt∫ tmc
0 fm(t)dt

. Therefore the income is esti-

mated by the following equation.

E[income] = (1−Pf)× r(tm
c)+Pf × r∗(ts

c) (13)

The first part is the reward earned by the main
process times the probability that all main processes
would complete tasks without failure. If at least one
main process fails, that task would have to be com-
pleted by a shadow process. As a result, the second
part is the reward earned by shadow process times the
system level failure probability.

If C is the charge expressed as dollars per unit of
energy consumption (e.g. kilowatt hour), then the ex-
pected expenditure would be C times the expected en-
ergy consumption for all N tasks:

E[expense] =C×E[energy] (14)

However, the expenditure of running the cloud
computing service is more than just energy, and must
includes hardware, maintenance, and human labor.
These costs can be accounted for by amortizing these
costs into the static power factor, ρ. Because pre-
vious studies have suggested (Elnozahy et al., 2003;
Raghavendra et al., 2008) that energy will become a
dominate factor we decided to focus on this challenge
and leave other aspects to future work.

Table 1: Symbols used in our analytical model.

Symbols Definition
W Task size
N Number of tasks
r(t) Reward function
R, P Maximum reward and penalty
tR1 , tR2 Response time thresholds
C Unit price of energy
ρ Static power ratio
tm
c , ts

c , t j
c Completion time of main process,

shadow process, and the whole job
fm(), fs() Failure density function of main and

shadow
λ Failure rate
Pf System level failure probability
σm, σb, σa Speeds of main, shadow before and

after failure (Optimization Outputs)

Based on the above formalization of the opti-
mization problem, the MATLAB Optimization Tool-
box (MathWorks, 2013) was used to solve the result-
ing nonlinear optimization problem. The parameters
of this problem are listed in Table 1.

5 PROFIT-AWARE STRETCHED
REPLICATION

We compare Shadow Replication to two other repli-
cation techniques, traditional replication and profit-
aware stretched replication. Traditional replication
requires that the two processes always execute at
the same speed σmax. Unlike traditional replication
Shadow Replication is dependent upon failure detec-
tion, enabling the replica to increase its execution
speed upon failure and maintain the targeted response
time thus maximizing profit. While this is the case in
many computing environments, there are cases where
failure detection may not be possible. To address this
limitation, we propose profit-aware stretched replica-
tion, whereby both the main process and the shadow
execute independently at stretched speeds to meet the
expected response time, without the need for the main
processes failure detection. In profit-aware stretched
replication both the main and shadow execute at speed
σr, found by optimizing the profit model. For both
traditional replication and stretched replication, the
task completion time is independent of failure and can
be directly calculated as:

tc =
W

σmax
or tc =

W
σr

(15)

Since all tasks will have the same completion
time, the job completion time would also be tc. Fur-
ther, the expected income, which depends on negoti-
ated reward function and job completion time, is in-
dependent of failure:

E[income] = r(tc) (16)
Since both traditional replication and profit-aware

stretched replication are special cases of our Shadow
Replication paradigm where σm = σb = σa = σmax or
σm = σb = σa = σr respectively, we can easily derive
the expected energy consumption using Equation 12
with E4 fixed at 0 and then compute the expected ex-
pense using Equation 14.

6 RE-EXECUTION

Contrary to replication, re-execution initially assigns
a single process for the execution of a task. If the orig-
inal task fails, the process is re-executed. In the cloud

computing execution framework this is equivalent to a
checkpoint/restart, the checkpoint is implicitly taken
at the end of each phase and because the tasks are
loosely coupled they can restart independently.

Based on the one failure assumption, two cases
must be considered to calculate the task completion
time. If no failure occurs, the task completion time is:

tc =
W

σmax
(17)

In case of failure, however, the completion time is
equal to the sum of the time elapsed until failure and
the time needed for re-execution. Again, we use the

expected value t∗f =
∫ tc

0 t× fm(t)dt∫ tc
0 fm(t)dt

to approximate the

time that successfully completed processes have to
spend waiting for the last one.

Similar to Shadow Replication, the income for re-
execution is the weighted average of the two cases:

E[income] = (1−Pf)× r(tc)+Pf × r(tc + t∗f) (18)

For one task, if no failure occurs then the expected
energy consumption can be calculated as

E5 = (1−
∫ tc

0
fm(t)dt)×(E(σmax, tc)+Pf ×E(0, t∗f))

(19)
If failure occurs, however, the expected energy

consumption can be calculated as

E6 =
∫ tc

0
(E(σmax, t)+E(σmax, tc))× fm(t)dt (20)

Therefore, the expected energy consumption by re-
execution for completing a job of N tasks is

E[energy] = N× (E5 +E6) (21)

7 EVALUATION

This section evaluates the expected profit of each of
the fault tolerance methods discussed above under dif-
ferent system environment. We have identified 5 im-
portant parameters which affect the expected profit:

• Static power ratio ρ, which determines the portion
of power that is unaffected by the execution speed.

• SLA - The amount of reward, penalty and the re-
quired response times.

• N - The total number of tasks.

• MTBF - The reliability of an individual node.

• Workload - The size, W , of each individual task.

Without loss of generality, we normalize σmax to
be 1, so that all the speeds can be expressed as a

fraction of maximum speed. Accordingly, the task
workload W is also adjusted such that it is equal to
the amount of time (in hours) required for a single
task, preserving the ratios expressed in Equation 3
and Equation 4. The price of energy is assumed to
be 1 unit. We assume that R in our reward model
is linearly proportional to the number of tasks N and
the maximal reward for one task is 3 units, so the to-
tal reward for a job is 3×N units. However, for the
analysis we look at the average of expenditure and in-
come on each task by dividing the total expenditure
and income by N. In our basic configuration we as-
sume that the static power ratio is 0.5, the task size is
1 hour, the node MTBF 5 is years, the number of tasks
is 100000, and the response time thresholds for maxi-
mal and minimal rewards are 1.3 hours and 2.6 hours
respectively. Since the maximal power consumption
is 1 unit, the energy needed for the task with one pro-
cess at maximal speed is also 1 unit.

7.1 Sensitivity to static power

With various architectures and organizations, servers
deployed at different data centers will have different
characteristics in terms of power consumption. The
static power ratio is used to abstract the amount of
static power consumed versus dynamic power.

Table 2: Speeds for different static power ratio. MTBF=5
years, N=100000, W=1 hour, tR1 =1.3 hours, tR2 =2.6 hours.

ρ σm σb σa
0.0 0.77 0.65 1.00
0.1 0.78 0.66 1.00
0.2 0.83 0.66 1.00
0.3 0.84 0.68 1.00
0.4 0.85 0.70 1.00
0.5 0.86 0.72 1.00
0.6 0.87 0.73 1.00
0.7 0.91 0.81 1.00
0.8 1.00 1.00 1.00
0.9 1.00 1.00 1.00
1.0 1.00 1.00 1.00

Table 2 shows how the profit-optimized execution
speeds of Shadow Replication will change as static
power increases. The execution speeds increase to
reduce the execution time as static power ration in-
creases. Observe that σa is always equal to σmax,
which means that after sensing the failure of the main
process, the shadow process should always shift to
maximum speed. This is expected because the opti-
mization will reduce the amount of work done by the
shadow process before failure resulting in the maxi-
mum execution speed after failure, thus minimizing
the amount of repeated work.

E
x
p

e
c
te

d
 P

ro
fi
ts

Static Power Ratio

Shadow
Traditional
Stretched

Re-execution

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4: Profit for different static power ratio. MTBF=5
years, N=100000, W=1 hour, tR1 =1.3 hours, tR2 =2.6 hours.

The potential profit gains achievable by using
profit-aware replication techniques decreases as static
power increases, as is shown in Figure 4. The rea-
son is that our profit-aware techniques rely upon the
fact that one can reduce energy costs by adjusting
the execution speeds. Modern systems have a static
power between 40%-70% and it is reasonable to sus-
pect that this will continue to be the case. Within
this target range of static power, Shadow Replica-
tion can achieve, on average, 19.3% more profit
than traditional replication, 8.9% more than profit-
aware stretched replication, and 28.8% more than re-
exeuction.

7.2 Sensitivity to response time

Response time is critical in the negotiation of SLA
as customers always expect their tasks to complete
as soon as possible. In this section we show a sen-
sitivity study with respect to task response time. We
vary the first threshold tR1 from the minimal response
time tmin to 1.9tmin, and set the second threshold tR2
to be always 2tR1 . We do not show results for varying
the reward and penalty values of the SLA. The rea-
son is that changing these values have no effect on the
choice of fault tolerance methods because they are all
affected in a similar way.

Table 3: Speeds for different response time threshold.
ρ=0.5, MTBF=5 years, N=100000, W=1 hour.

tR1 σm σb σa
1.0 1.00 1.00 1.00
1.1 0.94 0.88 1.00
1.2 0.89 0.79 1.00
1.3 0.86 0.72 1.00
1.4 1.00 0.00 1.00
1.5 1.00 0.00 1.00
1.6 0.84 0.00 1.00
1.7 0.74 0.00 1.00
1.8 0.64 0.00 1.00
1.9 0.64 0.00 1.00

E
x
p

e
c
te

d
 P

ro
fi
ts

Maximum Reward Response Time

Shadow
Traditional
Stretched

Re-execution

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Figure 5: Profit for different response time threshold.
ρ=0.5, MTBF=5 years, N=100000, W=1 hour.

In Table 3 we see that Shadow Replication adapts
the execution speeds to take advantage of the avail-
able laxity, reducing its speeds as laxity increases. It
is clear that Shadow Replication has two different ex-
ecution strategies separated by tR1 = 1.4: when time
is critical, it uses both a main and a shadow from the
very beginning to guarantee that task can be com-
pleted on time; when time is not critical, it mimics
re-execution and starts its shadow only after a failure.
Also note that as tR1 approaches tmin, the speeds of the
main process and the shadow process converge, ef-
fectively causing Shadow Replication to mimic tradi-
tional replication when faced with time-critical jobs.

Figure 5 shows the effect that targeted response
time has upon the profitability of each fault toler-
ance method. Compared to traditional replication,
all the other methods increase their profit as the tar-
geted response time increases, this is expected be-
cause each of the other techniques can make use of in-
creased laxity in time to increase profit. Re-execution
is the most sensitive to the target response time since
it fully relies upon time redundancy, showing that it
should only be used when the targeted response time
is not stringent. Again, Shadow Replication always
achieves more profit than traditional replication and
profit-aware stretched replication, and the profit gains
are 52.8% and 39.0% on average.

7.3 Sensitivity to number of tasks

Table 4: Speeds for different number of tasks. ρ=0.5,
MTBF=5 years, W=1 hour, tR1 =1.3 hours, tR2 =2.6 hours.

N σm σb σa
100 0.80 0.00 1
1000 0.84 0.00 1

10000 1.00 0.00 1
100000 0.86 0.72 1
1000000 0.86 0.72 1

10000000 0.86 0.72 1

E
x
p

e
c
te

d
 P

ro
fi
ts

Number of Tasks

Shadow
Traditional
Stretched

Re-execution

0.0

0.5

1.0

1.5

2.0

100 1,000 10,000 100,000 1,000,000 10,000,000

Figure 6: Profit for different number of tasks. ρ=0.5,
MTBF=5 years, W=1 hour, tR1 =1.3 hours, tR2 =2.6 hours.

The number of tasks has a direct influence upon
the system level failure probability because as the
number of tasks increase the probability that failure
will occur to at least one task increases. Recall that
even one failure can hurt the total income signifi-
cantly, and keep the other processes waiting. Thus,
shadow replication will adjust its execution speeds to
reduce the waiting time.

Table 4 is similar to Table 3 in that there are also
two execution strategies. When there are few parallel
tasks, shadow replication chooses to execute the main
processes at nearly full speed and keeps the shadow
processes dormant. The reason is that it is very likely
that all main processes can finish their tasks success-
fully, and the need for redundancy is thus less signif-
icant. The other case is when there is a huge number
of tasks to execute, the shadow process would keep
running at a slower speed than the main to protect the
main as well as save energy. Since the system level
failure probability is already 0.9 when N is 100000,
the speeds stay the same when N ≥ 100000.

Figure 6 confirms that for small number of tasks
re-execution is more profitable than replication. How-
ever, re-execution is not scalable as its profit decreases
rapidly after N reaches 10000. At the same time, tra-
ditional replication and profit-aware stretched repli-
cation are not affected by the number of tasks be-
cause neither are affected by the system level fail-
ure rate. On average, Shadow Replication achieves
43.5%, 59.3%, and 18.4% more profits than profit-
aware stretched replication, traditional replication and
re-exeuction, respectively.

7.4 Sensitivity to failure vulnerability

The ratio between task size and node MTBF repre-
sents the tasks vulnerability to failure, specifically it
is an approximation of the probability that failure oc-
curs during the execution of the task. In our analysis
we found that increasing task size will have the same

effect as reducing node MTBF. Therefore, we analyze
these together using the vulnerability to failure, allow-
ing us to analyze a wider range of system parameters.

Table 5: Speeds for different task size over MTBF. ρ=0.5,
N=100000, tR1 =1.3 hours, tR2 =2.6 hours.

W/MT BF σm σb σa
2E-10 0.79 0.00 1.00
2E-09 0.79 0.00 1.00
2E-08 0.80 0.00 1.00
2E-07 0.84 0.00 1.00
2E-06 1.00 0.00 1.00
2E-05 0.86 0.72 1.00
2E-04 0.86 0.72 1.00
2E-03 0.86 0.72 1.00

E
x
p

e
c
te

d
 P

ro
fi
ts

Failure Vulnerability

Shadow
Traditional
Stretched

Re-execution

0.0

0.5

1.0

1.5

2.0

2E-10 2E-9 2E-8 2E-7 2E-6 2E-5 2E-4 2E-3

Figure 7: Profit for different task size over MTBF. ρ=0.5,
N=100000, tR1 =1.3 hours, tR2 =2.6 hours.

As seen in Table 5 when the vulnerability to fail-
ure is low the execution speeds for the shadow process
is such that no work is done before failure. However,
as the vulnerability increases, the shadow process per-
forms more work before failure. This is analogous to
what we observed as we increased the number of tasks
(Table 4). As expected re-execution is desired when
the vulnerability to failure is low. As always, Shadow
Replication can adjust its execution strategy to maxi-
mize the profits, as shown in Figure 7.

7.5 Application comparison

To compare the potential benefit of “Shadow Repli-
cation” we evaluate the expected profit of each re-
silience technique using three different benchmark
applications representing a wide range of applica-
tion (Sangroya et al., 2012): Business Intelligence,
Bioinformatics and Recommendation System. The
business intelligence benchmark application is a de-
cision support system for a wholesale supplier. It em-
phasizes executing business-oriented ad-hoc queries
using Apache Hive. The bioinformatics application
performs DNA sequencing, allowing genome analy-
sis on a wide range of organisms. The recommen-

dation system is similar to those typically found in
e-commerce sites which, based upon browsing habits
and history, recommends similar products.

Application Processing Rate
Business Intelligence 3.3 (MB/s)

Bioinformatics 6.6 (MB/s)
Recommendation System 13.2 (MB/s)

Table 6: Cloud Applications (Sangroya et al., 2012)

Using the results of the experiments reported in
(Sangroya et al., 2012), we derived the time required
to process data for each application type (Table 6). We
assume that these processing rates per task will not
change when scaling the applications to future cloud
environments. This is a reasonable assumption given
that map-reduce tasks are loosely coupled and data
are widely distributed, therefore data and task work-
load will scale linearly.

Figure 8: Application comparison. ρ=0.5, N=500000,
tR1 =1.3tmin, tR2 =2.6tmin.

In Figure 8 we compare the expected profit for
each application using each of the 4 resilience tech-
niques. We consider two data sizes expected in fu-
ture cloud computing environments, 500TB and 2PB.
The figure shows that for business intelligence ap-
plications, Shadow Replication achieves significantly
larger profits for both data sizes. This is because busi-
ness intelligence applications tend to be IO intensive
resulting in longer running tasks. Whereas recom-
mendation systems tend to require little data IO re-
sulting in shorter running tasks making re-execution
as good as Shadow Replication. Bioinformatics tends
to be in between these two applications resulting
in shadow computing performing better when pro-
cessing large datasets (2 PB) but not outstanding on
smaller datasets (500 TB). The take away from this
evaluation is that for the shown system parameters if
phase execution is short, then re-execution performs
as well as Shadow Replication. Alternatively, if a
phase is long (20 minutes or greater), then Shadow

Replication can be as much as 47.9% more profitable
than re-execution. The previous sensitivity analysis
can be used to extrapolate expected profit for differ-
ent system parameters.

8 RELATED WORK

The increase of failures in large-scale systems
brought to the forefront the need for new fault-
tolerance techniques. Coordinated checkpointing,
with roll-back recovery, has been the dominant fault-
tolerance method in high performance computing
(HPC) (Agarwal et al., 2004; Alvisi et al., 1999; Daly,
2006; Helary et al., 1997). Based on this method,
the execution state of each process is periodically
saved to a stable storage. In case of failure, com-
putation is rolled-back to the last error-free, consis-
tent state recorded by all processes. As the scale
of the system increases, the viability of coordinated
checkpointing has become questionable. Despite nu-
merous improvements of the basic coordinated check-
pointing scheme, recent studies show that high fail-
ure rates, coupled with the checkpointing overhead,
limit the feasibility of centralized, coordinated check-
pointing (El Mehdi Diouri et al., 2012). Re-execution
and state machine replication have emerged as viable
schemes to deal with failures in large-scale systems.

Re-execution waits until a failure occurs and re-
executes the failed process. The major shortcoming
of this method stems from the large delay the com-
pletion of a job incurs. To avoid such a delay, state
machine replication executes simultaneously one or
more replicas of each process on different comput-
ing nodes. a (Ferreira and et. al., 2011; Sousa et al.,
2005). Although it enhances fault tolerance without
incurring excessive delay, state machine replication
increases the computing resources needed to com-
plete a job reliably.

Efforts have been devoted to increase the re-
siliency of cloud computing. Several of the proposed
schemes aim at enhancing existing fault-tolerance ap-
proaches. In (Jhawar et al., 2013) the authors pro-
pose a high-level scheme that allows users to spec-
ify the desired level of resilience, while hiding im-
plementation details. Similarly, (Zhao et al., 2010)
take a middleware-based approach to fault-tolerance
and propose a method that maintains strong replica
consistency, while achieving transparency and low
end-to-end latency. Authors in (Tchana et al., 2012)
propose a collaborative solution to enhance fault-
tolerance efficiency. In (Nicolae and Cappello, 2011),
the authors leverage virtual disk image snapshots to
minimize the storage space and checkpointing over-

head. In (Zheng, 2010) investigates how redun-
dant copies can be provisioned for tasks to improve
MapReduce fault tolerance and reduce latency. Most
of these schemes do not consider the impact of energy
on the system.

As the significance of power and energy consump-
tion in large datacenters increases, energy manage-
ment becomes critical (Chen et al., 2012; Lin et al.,
2011). Schemes are proposed to optimize power con-
sumption by either shutting down servers, or using
CPU DVFS. Our work takes a different approach to
fault-tolerance, and proposes a new computational
model, referred to as Shadow Replication, to achieve
high-levels of resiliency, while minimizing energy
consumption. In this work, we combine DVFS with
traditional replication to achieve fault tolerance and
maximize profit, while meeting users’ SLA require-
ment.

9 CONCLUSION

The main motivation of this work stems from the ob-
servation that, as systems become larger and more
complex, the rate of failures is highly-likely to in-
crease significantly. Hence, understanding the in-
terplay between fault-tolerance, energy consumption
and profit maximization is critical for the viability of
Cloud Computing to support future large-scale sys-
tems. To this end, we propose Shadow Replication
as a novel energy-aware, reward-based computational
model to achieve fault-tolerance and maximize the
profit. What differentiates Shadow Replication from
other methods is its ability to explore a parameterized
tradeoff between hardware and time redundancy to
achieve fault-tolerance, with minimum energy, while
meeting SLA requirements.

To assess the performance of the proposed fault-
tolerance computational model, an extensive perfor-
mance evaluation study is carried out. In this study,
system properties that affect the profitability of fault
tolerance methods, namely failure rate, targeted re-
sponse time and static power, are identified. The
failure rate is affected by the number of tasks and
vulnerability of the task to failure. The targeted re-
sponse time represents the clients’ desired job com-
pletion time, as expressed by the terms of the SLA.
Our performance evaluation shows that in all cases,
Shadow Replication outperforms existing fault tol-
erance methods. Furthermore, shadow replication
will converge to traditional replication when target
response time is stringent, and to re-execution when
target response time is relaxed or failure is unlikely.
Furthermore, the study reveals that the system static

power plays a critical role in the tradeoff between
the desired level of fault-tolerance, profit maximiza-
tion and energy consumption. This stems from the
reliance of Shadow Replication upon DVFS to reduce
energy costs. If the static power is high, slowing down
process execution does not lead to a significant reduc-
tion in the total energy needed to complete the task.

REFERENCES

Agarwal, S., Garg, R., and Gupta, M. S. (2004). Adaptive
incremental checkpointing for massively parallel sys-
tems. In ICS: Proc. of the 18th annual Int. Conf. on
Supercomputing, pages 277–286. ACM Press.

Alvisi, L., Elnozahy, E., Rao, S., Husain, S., and de Mel, A.
(1999). An analysis of communication induced check-
pointing. In Fault-Tolerant Computing. 29th Annual
Int. Symp. on, pages 242–249.

Amazon (2013). Amazon elastic compute cloud.
http://aws.amazon.com/ec2/.

Chen, X., Liu, X., Wang, S., and Chang, X.-W. (2012). Tail-
con: Power-minimizing tail percentile control of re-
sponse time in server clusters. In Reliable Distributed
Systems (SRDS), IEEE 31st Symp. on, pages 61–70.

Cristian, F. (1991). Understanding fault-tolerant distributed
systems. Commun. ACM, 34(2):56–78.

Daly, J. (2006). A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Genera-
tion Computer Systems, 22(3):303 – 312.

Daw, N. D. and Touretzky, D. S. (2002). Long-term reward
prediction in td models of the dopamine system. Neu-
ral Comput., 14(11):2567–2583.

El Mehdi Diouri, M., Gluck, O., Lefevre, L., and Cappello,
F. (2012). Energy considerations in checkpointing and
fault tolerance protocols. In Dependable Systems and
Networks Workshops (DSN-W), pages 1–6.

Elnozahy, M., Kistler, M., and Rajamony, R. (2003). En-
ergy conservation policies for web servers. In Proc. of
the 4th USENIX Symp. on Internet Tech. and Sys.

Ferdman, M. and et. al. (2012). Clearing the clouds: a
study of emerging scale-out workloads on modern
hardware. In Proc. of the 17th Int. Conf. on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS, pages 37–48, New York,
NY, USA. ACM.

Ferreira, K. and et. al. (2011). Evaluating the viability of
process replication reliability for exascale systems. In
Proc. of Int. Conf. for HPC, Networking, Storage and
Analysis, SC, pages 44:1–44:12, New York.

Flautner, K., Reinhardt, S., and Mudge, T. (2002). Auto-
matic performance setting for dynamic voltage scal-
ing. Wirel. Netw., 8(5):507–520.

Gärtner, F. C. (1999). Fundamentals of fault-tolerant dis-
tributed computing in asynchronous environments.
ACM Comput. Surv., 31(1):1–26.

Helary, J.-M., Mostefaoui, A., Netzer, R., and Raynal, M.
(1997). Preventing useless checkpoints in distributed

computations. In Reliable Distributed Systems. Proc.,
The 16th Symp. on, pages 183–190.

Jhawar, R., Piuri, V., and Santambrogio, M. (2013). Fault
tolerance management in cloud computing: A system-
level perspective. Systems Journal, 7(2):288–297.

Ko, S. Y., Hoque, I., Cho, B., and Gupta, I. (2010). Making
cloud intermediate data fault-tolerant. In Proc. of the
1st ACM Symp. on CC, pages 181–192. ACM.

Lin, J. and Dyer, C. (2010). Data-intensive text processing
with mapreduce. Synthesis Lectures on Human Lan-
guage Technologies, 3(1):1–177.

Lin, M., Wierman, A., Andrew, L., and Thereska, E.
(2011). Dynamic right-sizing for power-proportional
data centers. In INFOCOM, Proc., pages 1098–1106.

MathWorks (2013). Matlab: Optimization toolbox.
Nicolae, B. and Cappello, F. (2011). Blobcr: efficient

checkpoint-restart for hpc applications on iaas clouds
using virtual disk image snapshots. In Proc. of Int.
Conf. for HPC, Networking, Storage and Analysis,
pages 34:1–34:12.

Pillai, P. and Shin, K. G. (2001). Real-time dynamic voltage
scaling for low-power embedded operating systems.
In Proc. of the 18th ACM Symp. on Operating systems
principles, SOSP, pages 89–102.

Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z.,
and Zhu, X. (2008). No ”power” struggles: coordi-
nated multi-level power management for the data cen-
ter. SIGARCH Comput. Archit. News, 36(1):48–59.

Rusu, C., Melhem, R., and Mossé, D. (2003). Maximizing
rewards for real-time applications with energy con-
straints. ACM Trans. Emb. Comp. Syst., 2(4):537–559.

Sangroya, A., Serrano, D., and Bouchenak, S. (2012).
Benchmarking dependability of mapreduce systems.
In Reliable Distributed Systems (SRDS), IEEE 31st
Symp. on, pages 21–30.

Schroeder, B. and Gibson, G. (2010). A large-scale study of
failures in high-performance computing systems. De-
pend. and Sec. Comp., IEEE Tran. on, 7(4):337–350.

Sousa, P., Neves, N., and Verissimo, P. (2005). Resilient
state machine replication. In Dependable Computing.
Proc. 11th Pacific Rim Int. Symp. on, pages 305–309.

Tchana, A., Broto, L., and Hagimont, D. (2012). Ap-
proaches to cloud computing fault tolerance. In
Comp., Infor. & Tele. Sys., Int. Conf. on, pages 1–6.

Tsai, W.-T., Zhong, P., Elston, J., Bai, X., and Chen, Y.
(2011). Service replication strategies with mapreduce
in clouds. In Autonomous Decentralized Systems, 10th

Int. Symp. on, pages 381–388.
Zhai, B., Blaauw, D., Sylvester, D., and Flautner, K. (2004).

Theoretical and practical limits of dynamic voltage
scaling. In Design Automation Conf. Proc. 41st , pages
868–873.

Zhao, W., Melliar-Smith, P., and Moser, L. (2010). Fault
tolerance middleware for cloud computing. In Cloud
Computing, IEEE 3rd Int. Conf. on, pages 67–74.

Zheng, Q. (2010). Improving mapreduce fault tolerance in
the cloud. In Parallel Distributed Processing, Work-
shops and Phd Forum, IEEE Int. Symp. on, pages 1–6.

