
TBA: A Hybrid of Logic and Extensional Access Control
Systems

Extended Version

Timothy L. Hinrichs1, William C. Garrison III2, Adam J. Lee2, Skip Saunders3, and
John C. Mitchell4

1 University of Chicago
2 University of Pittsburgh

3 MITRE Corporation
4 Stanford University

Abstract. Logical policy-based access control models are greatly expressive and
thus provide the flexibility for administrators to represent a wide variety of au-
thorization policies. Extensional access control models, on the other hand, utilize
simple data structures to better enable a less trained and non-administrative work-
force to participate in the day-to-day operations of the system. In this paper, we
formally study a hybrid approach, tag-based authorization (TBA), which com-
bines the ease of use of extensional systems while still maintaining a meaningful
degree of the expressiveness of logical systems. TBA employs an extensional
data structure to represent metadata tags associated with subjects and objects, as
well as a logical language for defining the access control policy in terms of those
tags. We formally define TBA and introduce variants that include tag ontologies
and delegation. We evaluate the resulting system by comparing to well-known
extensional and logical access control models.

1 Introduction

Logical access control systems, in which users write formal logic to express access
control policies, are expressive and supremely flexible but are hard to use because they
require fluency in formal logic. Extensional access control systems (e.g., the access
matrix, role-based access control, Bell-La Padula), in which users enter atomic values
(e.g., roles, rights, classifications) into simple data structures (e.g., a matrix or a pair
of binary relations), are in contrast easy to use but are far less flexible. Judging from
the prominence of extensional approaches in real-world organizations, ease-of-use is
more important than flexibility; nevertheless, the problems with extensional systems are
well known and can be addressed to a large extent with the flexibility of logical access
control systems. Thus, a hybrid approach to access control that achieves the flexibility
of logic and the usability of extensional systems would serve the community well.

As a case in point, MITRE recently published a report outlining the problems the
U.S. military has had with their extensional access control system in the context of
dynamic coalitions [28]. The main problem is the frequency with which partner coun-
tries enter and leave coalitions, causing the U.S. to make massive, frequent changes

to its authorization policy. Logical access control systems are better suited to making
large, frequent changes than extensional systems and so are an attractive alternative to
the current system; however, it seems clear that the entire military cannot be trained to
write formal logic in the near future. The right solution seems to be a combination of
extensional and logical systems that allows relatively untrained personnel to create and
contribute data while trained security experts write formal logic to express the desired
access control policy.

Building a hybrid access control system that combines logic and extensionality is
hard because the simplicity—and therefore usability—of extensional systems appears
fundamentally at odds with logic’s flexiblity. Extensionality’s simplicity comes from
its rigid commitment to a single representation of an access control policy, e.g., RBAC
grants subject s access to permission p when ∃r.UR(s, r) ∧ PA(r, p). Logic’s flexibil-
ity comes from its ability to represent a single policy in a myriad of ways—allowing
security experts to choose the form best suited for supporting new and unforeseen de-
mands. A hybrid system must therefore concede some of its flexibility by committing
to a single representation for some component of the access control policy and must
also concede some of its simplicity by allowing multiple representations of the policy.

In this paper, we formally study tag-based authorization (TBA), a hybrid access
control system that combines the flexibility of logical access control systems and the
usability of extensional systems. Relatively untrained people choose descriptive tags
for the system’s subjects and objects (similar to the tagging employed by many popu-
lar and successful web applications, such as Flickr and YouTube), and trained security
experts write logical policies that define access permissions using combinations of sub-
ject and object tags (Section 2). One step we take to make TBA flexible yet easy to
use is including delegation but separating delegation decisions from access control de-
cisions. We replace delegation primitives inside the policy language with a scheme for
combining policies outside the language (Section 3). We introduce a simple algorithm
for TBA that is sound and complete and runs in polynomial time under certain condi-
tions (Section 4). We evaluate TBA by demonstrating its ability to express a number
of well-known access control paradigms (Section 5). Finally we discuss related work
(Section 6) and conclude (Section 7).

2 Tag-based Authorization

Tag-based authorization combines the strengths of logical access control systems and
extensional access control systems. Just as with logical access control, formal logic
is used to describe the authorization policy. Just as with extensional access control,
subjects and objects are ascribed a small set of simple properties when they are added
to the system (e.g., roles in Role-based Access Control or classifications and clearances
in Bell-La Padula). The properties ascribed to subjects and objects are tags that capture
all of the security-relevant properties of that subject or object. The authorization policy
is defined in terms of tags: it dictates which subject tags are sufficient for which rights
to which object tags. Because of the simplicity of tagging, relatively untrained users
can tag subjects and objects, while a relatively small number of administrators write the
logical authorization policy.

Formally, we use S to denote the set of subjects, O to denote the set of objects, and
R to denote the set of rights. T denotes the set of possible tags, and tag denotes the
function that maps subjects and objects to tag sets: tag : S ∪O → 2T . Tag denotes the
set of all possible tag functions.

An authorization policy is written in some logical access control language
〈P,L, |=〉. P is the set of all authorization policies; L is the set of queries, which we as-
sume always includes allow(s, o, r) for all subjects s, objects o, and rights r; |= dictates
which queries are true given an authorization policy and a tag function.

Definition 1 (Tag-based authorization (TBA)). For a logical language 〈P,L, |=〉, a
policy ∆ ∈ P , and a tag function tag where
• P: the set of all authorization policies
• L: the set of queries including allow(s, o, r) for all subjects s, objects o, rights r
• |=: a subset of P × Tag × L

authTBA(s, o, r) if and only if ∆, tag |= allow(s, o, r)

The following example illustrates TBA using DATALOG as the policy language.

Example 1 (Basic Tag-Based Authorization). Consider two subjects—s1 and s2—and
two objects—o1 and o2—that are tagged as follows:
• tag(s1) = {US,Army, enduring freedom, signals}
• tag(s2) = {France,Navy}
• tag(o1) = {submarine, radar}
• tag(o2) = {Kandahar, sat 732, high res}

Further, consider the following policy.
allow(S,O, read) :− US ∈ tag(S), Navy ∈ tag(S), submarine ∈ tag(O)
allow(S,O, read) :− France ∈ tag(S), Navy ∈ tag(S), submarine ∈ tag(O)
allow(S,O, read) :− signals ∈ tag(S), submarine ∈ tag(O)
allow(S,O, read) :− US ∈ tag(S), enduring freedom ∈ tag(S),

high res ∈ tag(O), sat 732 ∈ tag(O)
This policy allows U.S. and French naval officers to access documents about sub-

marines (via rules 1 and 2), all signals officers to access documents about radar systems
(rule 3), and all members of the U.S. military serving on Operation Enduring Freedom
to access high resolution satellite photographs taken by sat 732 (rule 4). As a result,
subject s1 can access objects o1 and o2, while subject s2 can only access object o1. �

Tag-based authorization differs from standard logical access control systems in that
tag has a fixed semantics and is defined outside of the policy. The fixed semantics of tag
forces policy-writers to define an authorization policy at a higher level of abstraction
than the usual S × O × R. Policies in TBA are really concerned with access control
decisions over the space of tags where subjects and objects are replaced by tag sets:
2T × 2T ×R. This abstraction results in a less flexible system since tag-space may not
be the right one for a particular situation; however, the loss of flexibility is the price
of a more understandable system for the majority of users. Relatively untrained users
can contribute to the system by changing tag, yet trained administrators can utilize the
flexibility of logic for expressing an access control policy. Thus, TBA enables a more
thorough utilization of the spectrum of skills present in a typical workforce.

2.1 Tag Ontologies

One of TBA’s limitations is that the number of relevant tags for a given subject or
object can be large and must be managed properly to ensure that (i) everyone uses
the same tags to mean the same thing and (ii) people are not routinely forced to tag
subjects/objects with hundreds or thousands of tags, e.g., the tag boat may imply the
tag aquatic, aquatic might imply vehicle, and so on.

Both to help people reach consensus on tag meanings and to reduce the burden
of document tagging, we propose employing an ontology (e.g., [22]) to encode the
relationships among tags. An ontology is helpful in the context of TBA in three ways.
First, an ontology states which tags imply other tags, thereby reducing the number of
tags that must be explicitly assigned to a subject or object; all tags implied are implicitly
included, e.g., tagging an object with boat implicitly includes the tags aquatic and
vehicle. Second, an ontology simplifies policy-writing because it states that some tag
combinations are illegal, e.g., short and tall, and the policy need not cover illegal
tag combinations. Third, an ontology helps people communicate the meanings of tags
because it explicitly states the relationships to other tags, e.g., if bat implies animal, it
is clear that bat refers to an animal instead of sports equipment.

Formally, a tag ontology Γ is a set of statements in propositional logic where the
propositions are tags. A set of tagsG is a legal combination wheneverG∪Γ is logically
consistent. The set of tags implied by some tag set G is the set of all t such that G ∪ Γ
entails t, denoted CnΓ (G). We use CnΓ (tag) to denote the application of Cn to all
tag sets in the tag function tag.

Employing ontologies leads to a new version of tag-based authorization.

Definition 2 (Ontology-aided TBA). Suppose ∆ is a TBA premise set, tag is a tag
function, and Γ is an ontology. For every x ∈ S ∪O, tag(x) ∪ Γ must be consistent.

authTBA(s, o, r) iff ∆,CnΓ (tag) |= auth(s, o, r)

Example 2 (Ontology-Aided TBA). Consider a system containing some subject s and
some object o that can be described as follows:
• tag(s) = {France,Navy}
• tag(o) = {submarine, radar}

Further, assume that the policy is the following DATALOG.
auth(S,O, read) :− France ∈ tag(S), Navy ∈ tag(S), watercraft ∈ tag(O)

Intuitively, this policy allows French naval officers access to documents about water-
crafts. In the basic tag-based authorization model, subject s would be denied access to
object o because o is not explicitly tagged as a document about watercrafts. However,
given a tag ontology containing the assertion submarine ⇒ watercraft, subject s
would be permitted access because tag(o) would implicitly include watercraft. �

Ontology-aided TBA further enables all classes of users to contribute to the running
of the system. Untrained personnel, who contribute mainly through generating and tag-
ging data, can do so with even less effort thanks to the ability to tag with a smaller
number of more specific tags. Administrative personnel also benefit because they can
ignore incompatible tag combinations, inevitably leading to shorter policies.

3 Delegation

TBA employs a single logical policy to represent all access control decisions, but of-
ten that single policy is derived from many conceptually separate policies written by
different security experts. The standard approach to providing the illusion of a single
policy from multiple disparate policies is to include delegation primitives in the logical
policy language that dictate how the disparate policies are to be combined, e.g., [2, 20].
This approach is supremely flexible. For example, policy A might import policy B’s
decisions as long as policy C imports policy D’s decisions on a specific topic. The
downside to adding delegation to the language is that it can be difficult to understand
how a given set of policies contribute to the overall policy—it might require reasoning
about the logical consequences of all of the policies at once; moreover, small changes
to any one policy may radically alter how the policies are pieced together.

Instead of adding delegation inside the logical language, TBA adds delegation out-
side of the logical language, thereby separating delegation decisions from access control
decisions. In particular, we utilize constructs that arrange a set of policies into a partial
order, where if A ≺ B then B delegates to A. Not only is this form of delegation es-
pecially simple to understand, it allows different security experts to choose different
logical languages for writing their policies. The only restriction is that all of the logical
languages used in the partial order must make access control decisions that are axioma-
tizable in a common logical language; otherwise, there would be no way to combine the
access control decisions made by distinct policies. We call one of these partial orders of
policies a structured policy.

More precisely, a structured policy is comprised of (i) a set of basic policies, (ii)
a partial order of those policies, (iii) a set of guards on the partial order, (iv) a meta-
language in which access control decisions are axiomatizable, and (v) a conflict resolu-
tion operator. A partial order over the policies enables delegation and implicitly imposes
limits on the decisions delegated; the guards on the partial order explicitly limit the de-
cisions that are delegated. If policy A is greater in the partial order than B then A
delegates to B the decisions A does not make, and if that delegation is guarded by G
then B’s actual decisions are limited to those described by G. Because the ordering on
policies is partial instead of total, some access control decisions are ambiguous, and the
conflict resolution mechanism is used to disambiguate such decisions.

For example, in the U.S. military, basic policies might be written by the President,
his chiefs of staff, and others. The partial order includes a single maximal policy: the
President’s. If the President allows or denies a request, the decision has been made; oth-
erwise, the chiefs of staff have the opportunity to make a decision. The Army chief of
staff is restricted from making decisions the Air Force chief of staff ought to make be-
cause of guards that restrict the Army to the Army-pertinent decisions and the Air Force
to the Air Force-pertinent decisions. If the Army and Air Force make opposing deci-
sions about a request that is pertinent to them both, the conflict resolution mechanism
dictates whose decision will be enforced.

Definition 3 (Structured Policy). A structured policy is a five-tuple 〈P,≺, G,N, res〉.
• P : a finite set of basic policies. If policy q is written in logical language
〈Pq,Lq, |=q〉 then both allow(s, o, r) and deny(s, o, r) belong to Lq for all s, o, r.

• ≺: a binary relation over P whose transitive closure is irreflexive (i.e., no cycles)
• G: a set of functions guardB≺C : S ×O ×R→ {true, false} for every B ≺ C
• N : the meta language, i.e., a logical language 〈P∗,L∗, |=∗〉 such that

– all subsets of
⋃
q∈P Lq are included in P∗

– L∗ includes allow(s, o, r) and deny(s, o, r) for all s,o,r.
• res : 2L

∗ × S × O × R → {allow, deny} is a conflict resolution operator: if
allow(s, o, r) is part of its input but deny(s, o, r) is not then it returns allow, and
vice versa.

In this definition, the guard for an ordering B ≺ C is formalized as a function that
dictates which subset of access control requests B is permitted to make. In practice that
function is expressed in a logical policy language. For example, the guard might itself
be a TBA (structured) policy, thereby deciding which requests are pertinent forB based
on the tags for the subjects and objects.

Example 3 (Guards). Suppose the President wanted to scope the policy of his Army
Chief of Staff so that it could only make authorization decisions about the objects the
Army is primarily responsible for. If all such objects are tagged with army, the guard
on the ordering Army ≺ Pres might be expressed as

allow(S,O,R) :− army ∈ tag(O). �

Another noteworthy part of our structured policy definition is the meta-languageN .
N represents a logical language in which the access control decisions of all the basic
policies can be combined. Formally, the process of combining access control decisions
is achieved with N ’s entailment relation: given the decisions made by (possibly) differ-
ent policies, compute all the implications of those decisions. Technically, this requires
the premise sets of N to include all possible combinations of access control decisions
from the individual policy languages—a constraint included in the definition.

The final component of a structured policy that warrants discussion is the conflict
resolution operator res. res is given the implications of all the appropriate policy deci-
sions and must choose whether to allow or deny. For unambiguous cases (where either
allow or deny is present but not both), its behavior is fixed, but for ambiguous cases
where its input includes both allow and deny, it is free to make either decision. Because
the language of access control decisions is unconstrained, those decisions can record
a plethora of information important for conflict resolution, e.g., the source of the deci-
sion or its proof. Thus, the conflict resolution operator may be given not only a series of
allow and deny statements but also statements that justify each allow and deny. For ex-
ample, for conflict resolution that utilizes proofs, the individual policy decisions might
always include a sentence of the form explanation(allow/deny(s, o, r), proof).
Thus, TBA makes no commitment to a particular conflict resolution operator or even
the information upon which conflicts are resolved, as these issues have been studied
heavily in the literature, e.g., [1, 3–6, 11, 14, 17, 24, 30].

The formal semantics of a structured policy is defined in terms of the decision a
given basic policy p makes about a given access control request 〈s, o, r〉. If p either
allows or denies the request, p’s decision stands; otherwise, p’s decision is the com-
bination of its partial decisions together with the union of the decisions made by the

policies to which p delegated (i.e., the policies immediately less than p in the policy or-
dering). A structured policy allows a request 〈s, o, r〉 if the conflict resolution operator
when applied to the union of the decisions made by the maximal policies in the ordering
returns allow; otherwise, the structured policy denies the request.

Furthermore, because the definition for a structured policy allows basic policies to
be written in different logical languages (including e.g., linear logic [9], first-order logic
[16], and ASP [4]), the formal semantics correctly addresses heterogenous collections
of basic policies, using |=p to denote the entailment relation for policy p.

Definition 4 (Structured Policy Semantics). Consider a structured policy
〈P,≺, G, 〈P∗,L∗, |=∗〉, res〉, tag function tag, ontology Γ , and an access con-
trol request 〈s, o, r〉. First, for all x ∈ S ∪ O, tag(x) ∪ Γ is consistent. Second we
define the point semantics of policy p ∈ P on 〈s, o, r〉, written Point[p, s, o, r], which
is an element of P∗. Let S = {φ | p, CnΓ (tag) |=p φ}.

1. If S includes allow(s, o, r) and/or deny(s, o, r) then Point[p, s, o, r] = S.
2. Otherwise, Point[p, s, o, r] = S ∪

⋃
q ≺ p and

guardq≺p(s, o, r)

Point[q, s, o, r].

Finally we define the structured policy semantics.

authTBA(s, o, r) iff res

Cn∗
 ⋃
p | 6∃q.p≺q

Point[p, s, o, r]

 = allow

Admittedly the formal definitions for a structured policy are not so simple; however,
once the logical policy languages are chosen, explaining to policy writers how to use
a structured policy is especially simple: write basic policies to make access control
decisions and adjust the partial order and its guards to delegate those decisions.

Example 4 (Simple ordering). Suppose the U.S. President wanted to make decisions
about information the general public was allowed to have, e.g., the list of visitors who
met with the President. He writes a policyA that allows everyone access to the appropri-
ate objects and neither allows nor denies any of the remaining requests. The President
then delegates the remaining decision to his chiefs of staff for the Army, Navy, and Air
Force, who write policies B, C, and D, respectively. The partial order is then B ≺ A,
C ≺ A, D ≺ A. The list of Presidential visitors are always allowed because policy
A allows them and does not deny them. Any decision not made by policy A is then
delegated to policies B, C, and D. If for some request B allows but C denies, then the
conflict resolution operator resolves the ambiguity. �

Example 5 (Disjunctive decisions). Suppose an upper-level manager wants to ensure
that every employee is either given access to object o1 or object o2 but not both.
Moreover, she wants to delegate the choice to the low-level managers in the com-
pany. She can author a (first-order logic) policy, A, that says ∀s.(allow(s, o1, read) ∨
allow(s, o2, read)) and ∀s.(deny(s, o1, read) ∨ deny(s, o2, read)). Then if the low-
level manager policies are B1,. . . ,Bn, the upper-level manager ensures that Bi ≺ A

with appropriate guards for i ∈ {1, . . . , n}. Each policy Bi can then choose which of
the objects to grant for each employee. Furthermore, if one of the low-level managers
writes a policy that grants access to both objects or to neither, there will be a con-
flict, and the conflict resolution operator can choose to enforce A’s policy by arbitrarily
choosing between o1 and o2. �

4 Algorithms

In this section we introduce an algorithm that use an ontology-aided, structured TBA
policy to either allow or deny a given request. The algorithm was designed for a meta-
language that is a simple fragment of first-order logic: all premise sets are ground atoms,
the queries are simply allow(s, o, r) and deny(s, o, r), and the entailment relation is
standard first-order entailment. The algorithm is sound and complete as long as the
proof systems for basic policies are sound and complete (along with a few other sim-
ple conditions), and except for tag expansion it runs in polynomial time under similar
conditions. Moreover, we identify a class of ontologies for which tag expansion runs in
polynomial time.

The algorithm begins by expanding the subject and object tags to include all their
consequences as prescribed by the ontology. It then recursively walks the partial order
of policies to compute the point semantics of each policy, while memoizing the results.
The point semantics computation requires computing the consequences of the basic
theory, evaluating guards on lesser policies, and possibly recursing. Then the algorithm
computes the union of the point semantics of the maximal policies and gives the result
to the conflict resolution operator. Algorithm 1 and Algorithm 2 give the pseudo-code.

Algorithm 1 TBA (request 〈s, o, r〉, tags tag, Horn ontology Γ , policy 〈P,≺, G, res〉)
Returns: true if 〈s, o, r〉 is allowed and false otherwise
1: point(p) :=⊥ for all policies p ∈ P
2: decisions := ∅
3: expandedtag := CnΓ (tag)
4: for all p ∈ P where p is maximal in ≺ do
5: point := UPDATEPOINT(point, p, expandedtag)
6: decisions := decisions ∪ point(p, expandedtag)
7: return res(decisions) == allow

Theorem 1. Algorithm 1 is sound and complete if (i) for all basic policies p, the proof
system for p is sound and complete and (ii) res when applied to atoms X and s, o, r
ensures res(X, s, o, r) = res(X ∩ {allow(s, o, r), deny(s, o, r)}, s, o, r).

Proof. Suppose Algorithm 1 is invoked on 〈s, o, r〉, tag,Horn(Γ), and 〈P,≺, G, res〉.
(Soundness and Completeness) Algorithm 1 allows the request 〈s, o, r〉 if and only

if res returns allow when applied to the union of the computed point semantics of
the maximal policies in ≺ (restricted to allow(s, o, r) and deny(s, o, r)) using the tag

Algorithm 2 UPDATEPOINT(reference &point, policy p, tag function tag)
Assumes: Parameters to TBA are accessible
Returns: Point semantics for p on 〈s, o, r〉, recursively memoizing results in point
1: if point(p) =⊥ then
2: V := {allow(s, o, r) | p, tag `p allow(s, o, r)} ∪

{deny(s, o, r) | p, tag `p deny(s, o, r)}.
3: if V 6= ∅ then
4: point(p) := V
5: else
6: decisions = ∅
7: for all q ∈ P where q ≺ p and guardq≺p(s, o, r) = true do
8: decisions := decisions ∪ UPDATEPOINT(point, q, tag)
9: point(p) := decisions

10: return point(p)

function CnHorn(Γ)(tag). In contrast, the semantics makes the same decision but gives
res as input the atoms of all the consequences of the union of the maximal point se-
mantics and uses the tag function CnΓ (tag). First note that Lemma (1) guarantees
that CnHorn(Γ)(tag) = CnΓ (tag) since every tag set is required to be consistent with
Γ . Second, because of the restriction on res, the non-〈s, o, r〉 decisions are irrelevant
to res; thus, it suffices to show that if the maximal policies in ≺ are {p1, . . . , pk},
then point(p1)∪ · · · ∪ point(pk) = Cn∗(Point[p1, s, o, r]∪ · · · ∪Point[pk, s, o, r])∩
{allow(s, o, r), deny(s, o, r)}. To prove this equality, we first claim that for every i,
point(pi) = Point[pi, s, o, r]∩{allow(s, o, r), deny(s, o, r)}. Then we proceed as fol-
lows.

point(p1) ∪ · · · ∪ point(pk)
by our claim

= Point[p1, s, o, r] ∩ {allow(s, o, r), deny(s, o, r)} ∪ · · · ∪ Point[p1, s, o, r] ∩ {allow(s, o, r), deny(s, o, r)}
by distributivity

= (Point[p1, s, o, r] ∪ · · · ∪ Point[p1, s, o, r]) ∩ {allow(s, o, r), deny(s, o, r)}
since the meta-language is first-order logic where L∗ and therefore Point is atomic

= Cn∗(Point[p1, s, o, r] ∪ · · · ∪ Point[p1, s, o, r]) ∩ {allow(s, o, r), deny(s, o, r)}

Thus, Algorithm 1 is sound and complete as long as the point semantics are computed
as claimed above.

(Point Semantics) The computed point semantics for each policy p, point(p), is
computed and memoized with respect to the given request 〈s, o, r〉 by UPDATEPOINT.
Using induction on the ordering ≺ we prove that point(p) = Point[pi, s, o, r] ∩
{allow(s, o, r), deny(s, o, r)}. Base case is the minimal elements of ≺. Inductive case
assumes the hypothesis for all policies less than a given policy. The two cases only differ
in that in the base case the set of policies less than the given policy is known to be empty,
whereas in the inductive case there may be 0 or more lesser policies. So consider an in-
vocation of UPDATEPOINT for policy p. If the point semantics for p has already been
computed, UPDATEPOINT returns that value: point(p). Otherwise, it computes a set of
ground atoms V from p using `p and the expanded tag function, which by the sound-
ness and completeness of `p ensures V = Cn(p) ∩ {allow(s, o, r), deny(s, o, r)}.

In contrast, the semantics compute the set S = Cn(p), which differs from V be-
cause S may contain allow/deny atoms for other access control requests. But clearly
V = S ∩ {allow(s, o, r), deny(s, o, r)}. If V is non-empty, point(p) = V , mak-
ing point(p) = Point[p, s, o, r] ∩ {allow(s, o, r), deny(s, o, r)}. Otherwise, UPDATE-
POINT computes point(q) for all q ≺ p where guardq≺p(s, o, r) is true and sets
point(p) to the union of the results plus V , i.e., point(p) = V ∪

⋃
q≺p point(q). We

proceed as follows.

point(p)
= V ∪

⋃
q≺p point(q)

by V ’s equality above and the inductive hypothesis
= S ∩ {allow(s, o, r), deny(s, o, r)} ∪

⋃
q≺p Point[q, s, o, r] ∩ {allow(s, o, r), deny(s, o, r)}

by distributivity
= (S ∪

⋃
q≺p Point[q, s, o, r]) ∩ {allow(s, o, r), deny(s, o, r)}

by semantics
= Point[p, s, o, r] ∩ {allow(s, o, r), deny(s, o, r)}

This completes the inductive step and the inductive proof. �

Expanding the tags for a given subject or object is coNP-complete because it
amounts to computing entailment in propositional logic. Moving tag expansion offline,
e.g., each time a subject or object is entered into the system, would ensure Algorithm 1
always runs in polynomial time. The drawback of offline tag expansion is that it requires
storing the consequences of all the tags for all the subjects and objects and updating all
those consequences each time the ontology changes. Online tag expansion, on the other
hand, would enable that computation to be performed for only the relevant subjects and
objects; moreover, the results would not need to be stored.

For situations where online tag expansion is deemed necessary, we identify a special
class of ontologies that can be compiled offline to make online tag expansion run in
polynomial time. Such ontologies have the property that their Horn consequences are
polynomial in their size. Since the Horn consequences are sufficient for performing
tag expansion and that the algorithm for Horn tag expansion runs in polynomial time,
computing the Horn consequences of the ontology offline enables polynomial online
tag expansion. We say that such ontologies have a small Horn theory.

Definition 5 (Small Horn Theory). The Horn consequences of an ontology Γ , denoted
Horn(Γ), is the set of all statements of the form p1 ⇐ p2∧· · ·∧pn that are entailed by
Γ , where pi is a proposition for all i. Γ has a small Horn theory if the size of Horn(Γ)
is polynomial in the size of Γ .

To utilize these results, we invoke Algorithm 1 with Horn(Γ) instead of Γ and en-
sure that theCnΓ operator implements the polynomial-time version of Horn entailment.
If Γ has a small Horn theory, tag expansion runs in polynomial time in Γ ; otherwise,
Horn(Γ) is exponential in Γ and tag expansion runs in exponential time in Γ .

Lemma 1. Suppose Γ is an ontology, and G is a set of tags such that Γ ∪ G is con-
sistent. If Γ ∪ G |= t then Horn(Γ) ∪ G |= t. Moreover, the set of all t such that
Horn(Γ) ∪G |= t can be computed in polynomial time.

Proof. First we show that the Horn consequences of a theory are sufficient for entail-
ment. Suppose Γ∪G |= t; then since Γ∪G is consistent by the generative completeness
of resolution there is a resolution proof ending in the singleton clause {t}. We demon-
strate how to construct a proof of the singleton clause {t} from Horn(Γ) ∪G. First se
the associativity and commutativity of resolution to reorder the original proof so that
all the resolutions with elements from G occur at the end. Second, starting at {t}, walk
backwards up the proof. If there is no ancestor of {t} that belongs to the resolution clo-
sure, then the proof of {t} depends only on G, and hence there is a proof of {t} from G
and therefore from Horn(Γ)∪G. So suppose there is an ancestor clause C of {t} that
belongs to the resolution closure of Γ . The remainder of the proof resolves away all of
the literals in C except for t. Since all of those resolution steps resolve with elements
of G, which are all positive, all of the literals of C are negative except for t. Thus C is
a Horn clause, and by construction there is a proof of {t} from C and G; ergo, there is
a proof of {t} from Horn(Γ) ∪G.

Next we recall the proof that computing all the atomic consequences of a propo-
sitional Horn theory requires polynomial time. This ensures that the consequences of
Horn(Γ) ∪ G is computable in polynomial-time because Horn(Γ) ∪ G is a propo-
sitional Horn theory. Here we assume the Horn theory is written in rule form. The
algorithm is a simple variation of the CFG marking algorithm found in Sipser [26].
Begin by finding the propositions occurring in the head of a rule with an empty body,
and place a mark on all occurrences of those propositions throughout the rule set. Next
find all those propositions occurring in the head of rule where all the propositions in
the body have been marked, and mark all occurrences of those propositions in the rules;
iterate until no new marks are made. The set of all propositions entailed is the set of all
marked propositions. Each iteration of this algorithm runs in time linear in the size of
the Horn rules, and the number of iterations is bounded from above by the number of
propositions in the rules since each iteration must mark at least one proposition. Thus,
the total runtime is linear in the size of the Horn theory. �

Theorem 2. Algorithm 1 runs in polynomial time if (i) the proof systems for all the
basic policies run in polynomial time, (ii) the evaluation of guardB≺C runs in poly-
nomial time, (iii) the ontology has a small Horn theory, and (iv) the conflict resolution
mechanism runs in polynomial time.

Proof. Suppose Algorithm 1 is invoked on 〈s, o, r〉, tag,Horn(Γ), and 〈P,≺, G, res〉.
First since (i) Γ has a small Horn theory, Horn(Γ) is guaranteed to be polynomial

in the size of Γ , and (ii) the lemma above guarantees that computing the Horn conse-
quences of a theory and a tag set is polynomial, the computation of the expansion of
any single tag set V is polynomial in Γ and V . The algorithm expands the tag set for
each of the subjects and objects, making the total expansion computation run in time
polynomial in the size of Γ and tag; moreover, the expanded tag function is polynomial
in the size of Γ and tag.

Second, the algorithm computes the point semantics for each policy p ∈ P at most
once; thus, the point semantics computation in the worst case amounts to walking the
partial order and for each policy, (i) computing the consequences of that policy, (ii),
computing several guards, (iii) unioning the point semantics of child policies. Step (i) is

assumed to run in polynomial time in its inputs. Since the expanded tag is polynomial
in the size of the original tag and Γ , and the policy p is unchanged, the inputs to `p
are polynomial in the size of p, tag, and Γ ; thus, computing the consequences requires
polynomial time and therefore produces a polynomial-sized result. Step (ii) is assumed
to run in polynomial time for each guard and because of memoization, each guard is
computed at most once, making this step run in time polynomial in the guard compu-
tation and the size of ≺. Step (iii) is the union of at most |P | polynomial-sized results,
which produces a polynomial-sized result in polynomial time. Thus the point semantics
computation runs in time polynomial in the size of P , ≺, Γ , G, tag.

Finally, the conflict resolution mechanism is applied to the result of the point se-
mantics computation. Since it is assumed to run in polynomial time, and its inputs are
polynomial in Algorithm 1’s inputs, the entire algorithm runs in polynomial time. �

5 Evaluation

In this section, we evaluate the utility of TBA by exploring its expressive power. We first
demonstrate that various incarnations of TBA can be used to express a range of common
policy idioms. We then use the formal reduction framework developed by Tripunitara
and Li [27] to demonstrate that TBA is more expressive than several representative
access control schemes from the literature. Our reductions show that TBA can provide
the same features as these schemes while also preserving the compositional security
analysis properties of these systems.

5.1 Representing Common Policy Idioms

Below we enumerate a list of well-known authorization policy idioms and show that
each can be represented using some tag-based authorization system. When using
tag-based authorization to represent each of these idioms, we use DATALOG as the
underlying policy language. In doing so, we assume that every request not explicitly
allowed is denied.

Access matrix. The access matrix uses a function matrix : S × O → 2R to store
the rights that each subject has over every object. An access is permitted under the
following condition: authmat(s, o, r) iff r ∈ matrix(s, o). To implement this scheme
using tag-based authorization, there must be a unique tag for each document (e.g., its
inode number) and each user (e.g., her uid). The policy consists of a series of simple
statements such as the one below.

allow(S,O, read) :− user123 ∈ tag(S), doc789 ∈ tag(O)

Attribute-based access control. In attribute-based authorization systems, access deci-
sions are made based on the attributes ascribed to a user by their organization. Basically,
ABAC is TBA without object tags (or, more formally, where every object is tagged with
the empty set). The following example allows any user to read doc789, provided that
she is a member of the security group and has not been blacklisted.

allow(S, doc789, read) :− security ∈ tag(S), blacklist 6∈ tag(S)

Role-based access control. In RBAC systems, users are assigned to roles representing
their job functions, and permissions are given to roles. Here we focus on RBAC1 as
defined in [12], where the roles are arranged in a hierarchy, and a user is granted access
when one of her roles is higher in the hierarchy than some role that is permitted access.

authRBAC1(s, o, r) iff ∃g, g′.UR(s, g) ∧ g ≥ g′ ∧ PA(g′, o, r))

To implement RBAC1 with tag-based authorization, the tag set is defined as T =
G ∪ G × R, i.e., the set of roles and the set of (role, right) tuples. Users are tagged
with their roles, and documents are tagged with (role, right) tuples. The role hierarchy
is axiomatized as an ontology Γ so that for every pair of roles such that g ≥ g′, we have
Γ |= g ⇒ g′. The following DATALOG policy implements RBAC1.

allow(S,O,R) :− G ∈ tag(S), 〈G,R〉 ∈ tag(O)

Discretionary access control (Linux). In the Linux authorization model, each docu-
ment has different rights for its owner, group, and the world, which we represent with
the function rights. rightsmaps each object to three sets of rightsO → 2R×2R×2R.
The functions user, group, andworld, when applied to the rights of a document extract
the rights that the user, the group, and the world have for that object access, respectively.
Additionally each object is associated with a user owner and a group owner, represented
by the functions userown : O → S and groupown : O → G (where G is the set of
all groups). Each user is assigned some number of groups, represented by the function
groups : S → 2G.

authlinux(s, o, r) iff
(userown(o) = s ∧ r ∈ user(rights(d))) ∨
(groupown(o) ∈ groups(s) ∧ r ∈ group(rights(d)) ∨
r ∈ world(rights(d))

The Linux authorization policy gives a user access if (i) the user owns the document
and the owner has access, (ii) the user belongs to the group that owns the document
and the group has access, or (iii) the world has access. To implement the Linux scheme
with TBA, the document tags T consist of the subjects S, groups G, and the rights tags
{userread, groupread, worldread}. Permissions other than read can be handled in a
similar manner. Each document is tagged with the user owner, the group owner, and a
subset of the rights tags, and each user is tagged with the groups she belongs to. The
Linux read policy is then given by the DATALOG fragment below.

allow(U,D, read) :− U ∈ tag(D), userread ∈ tag(D)
allow(U,D, read) :− G ∈ tag(D), groupread ∈ tag(D), G ∈ tag(U)
allow(U,D, read) :− worldread ∈ tag(D)

Mandatory (Lattice-Based) Access Control In an LBAC system, L is a set of classifi-
cation/clearance levels (e.g., Secret, TopSecret), and C is the set of compartments (e.g.,
Nuclear, Submarine). The function classification assigns each object a classification
and a set of compartments: O → L × 2C , and the function clearance assigns each
subject a clearance and set of compartments: S → L× 2C . There is a total ordering ≤

on L, and v denotes the partial ordering on L × 2C : (l1, c1) v (l2, c2) if and only if
l1 ≤ l2 and c1 ⊆ c2. Users can read documents whose classifications are dominated by
their clearance (no read up) and write documents whose classifications dominate their
clearance (no write down):

authLBAC(u, d, read) iff classification(d) v clearance(u)
authLBAC(u, d, write) iff classification(d) w clearance(u)

To implement this policy idiom with tag-based authorization, the set of tags is the set
of all compartments and security levels: T = L ∪ C. Each subject and object is tagged
with its level and all its compartments. Then the DATALOG (with negation) policy for
the LBAC no-read-up idiom is given below, where compartment tags are identified by
comp, level tags by level, and the total ordering on levels is represented by leq.

allow(S,O, read) :− allowlevel(S,O), allowcomp(S,O)
allowlevel(S,O) :− C ∈ tag(S), level(C),

E ∈ tag(O), level(E), leq(E,C)
allowcomp(S,O) :− ¬somecompmissing(S,O)
somecompmissing(S,O) :− C ∈ tag(O), comp(C), C 6∈ tag(S)

In the first rule, the first condition, allowlevel, ensures that the object’s security
level is less than the subject’s level. The second condition, allowcomp, ensures
that the object’s compartments are a subset of the subject’s compartments, which is
implemented by ensuring it is not the case that one of the object’s compartments fails
to be one of the subject’s compartments.

The RT Trust Management Language. RT [20] employs a form of role-based del-
egation that consists of the four types of rules shown in Table 1. Structured policies
of TBA can express a certain fragment of RT -style delegation. Given a set of rules of
types 1–3, where the delegation graph of those rules is acyclic, we can emulate those
rules by constructing a structured TBA policy. (The delegation graph consists of one
node per principal and an edge from A to B if A delegates to B.) The partial order ≺
includes B ≺ A if A delegates to B. Then by using a new right activate, we proceed
as follows for each of the rule types.

1. • Add allow(userB, roleA.R, activate) to policy A
2. • Add allow(S, roleA.R, activate) :− allow(S, roleB.R1, activate) to A
• Add 〈S, roleB.R1, activate〉 to guardB≺A for all S

3. • Add allow(S, roleA.R, activate) :− allow(S, roleB.R1, activate),
allow(S, roleC.R2, activate) to policy A
• Add 〈S, roleB.R1, activate〉 to guardB≺A for all S
• Add 〈S, roleC.R2, activate〉 to guardC≺A for all S

Rules of type (4) are not expressible since they cause the delegation graph to be
dependent on the contents of basic policies. Even if it were reasonable to require that
dynamic delegation graph to be acyclic, emulating type (4) rules would require chang-
ing ≺ each time a basic policy changed.

Type Rule Description
1 A.R← B User B is a member of the role R defined by user A
2 A.R← B.R1 A’s role R contains all members of B’s role R1

3 A.R← B.R1 ∩B.R2 A’s role R contains all users who are members of both B’s
role R1 and C’s role R2

4 A.R← A.R1.R2 A’s role R contains all users who are members of X’s role
R2 for some X in A’s role R1

Table 1. The four types of RT rules.

5.2 Formal Expressive Power Analysis

The preceding section demonstrates that TBA is capable of encoding many common
policy idioms, but says nothing about whether these encodings have the same safety
analysis properties of common implementations of these idioms. In [27], Tripunitara
and Li introduce a framework for comparing the expressiveness of access control sys-
tems that views an access control system as a state transition system and performs com-
parisons using a type of bisimulation and a generalized definition of safety. The crux
of their framework relies on demonstrating the existence or non-existence of a state-
matching reduction between two systems. Intuitively, a state-matching reduction from
A to B is a mapping from the states of A to the states of B so that an external observer
affecting access control changes and making queries can not distinguish whether she
is using A or B, and further implies that B maintains all safety analysis properties of
A. As a result, state-matching reductions are a way of analyzing the relative expressive
power of two systems.

We now present theorems comparing TBA to a number of well-known systems in
terms of state-matching reductions. Proofs of these theorems are available in the appen-
dices of this paper. We first show that TBA is at least as expressive as a common discre-
tionary access control scheme (SDCO), a common role-based access control scheme
(ARBAC97), and a common mandatory access control scheme (the Bell-La Padula
model).

Theorem 3. There exists a state-matching reduction from SDCO to TBA.

Theorem 4. There exists a state-matching reduction from ARBAC97 to TBA.

Theorem 5. There exists a state-matching reduction from BLP to TBA.

The preceding three theorems are proven by construction; i.e., by first giving a map-
ping to TBA from each access control scheme, and then proving that the mapping sat-
isfies the requirements of a state-matching reduction. Since a state-matching reduction
from A to B proves that B is at least as expressive as A, the above results show that
TBA is at least as expressive as SDCO, ARBAC97, and BLP. The next results ensure
that none of these schemes are as expressive as TBA.

Theorem 6. There exists no state-matching reduction from TBA to SDCO.

Theorem 7. There exists no state-matching reduction from TBA to ARBAC97.

Theorem 8. There exists no state-matching reduction from TBA to BLP.

Non-existence is proven by contradiction; i.e., by first assuming the existence of
a state-matching reduction from TBA to another system, and then providing a state
and transition rule for TBA under which it is impossible for any mapping to the other
system to satisfy the structural requirements of a state-matching reduction. When a
state-matching reduction from A to B is accompanied by the nonexistence of a state-
matching reduction in the reverse direction, it proves that B is strictly more expressive
than A. As a result, we have shown that TBA is strictly more expressive than all of
SDCO, ARBAC97, and BLP.

6 Related Work

TBA has been studied informally in [23, 29], though that work allows tags on sub-
jects but not objects. Section 5 compares TBA to several well-known authorization
paradigms. We do not survey related work on tag ontologies, which have been studied
extensively by the Semantic Web community, but as evidence of viability simply point
to two organizations employing ontologies to handle large terminologies: the U.S. Na-
tional Cancer Institute (NCI Thesaurus http://www.cancer.gov/cancertopics/
terminologyresources) and the U.S. National Library of Medicine (SNOMED-
CT http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html).
In this section, we discuss work related to structured policies, conflict resolution, and
delegation.

Policy Structure. Structured policies can be seen as combining two operations on
policies: the “override” operator in [8] (also called “exceptions” in [5]) and the “scop-
ing” operator in [8, 24]. Our choice to employ these two policy combination operators
instead of a richer framework [8,10] was driven by our desire for a conceptually simple
and therefore highly usable framework; these two operators seemed to be the minimal
necessary to support delegation.

Conflict resolution. Conflict resolution is important in the context of structured
policies, where conflicts must be resolved within basic policies as well as across poli-
cies. We make no commitment to a particular scheme but provide a framework for
implementing other proposals in the literature. Our framework is based on the premise
of a fixed global operator such as [4, 11, 24], though user-settable conflict resolution
schemes for each policy such as in [3,14,30] can be achieved by building them into the
entailment relations for the individual policies.

Trust Management and delegation. Trust management [2,7,15,18–20,25,31,32]
is concerned with distributed authorization and therefore focuses extensively on dele-
gation [2, 13, 21]. TBA’s delegation functionality was designed for simplicity, and as
shown in Section 5 is less powerful than RT ’s delegation primitives. This decision was
made to improve usability, with an acknowledged decrease of flexibility and expres-
siveness.

7 Conclusion

Logical access control systems are attractive for their power and flexibility, while ex-
tensional access control systems are known for their simplicity and the ease with which

http://www.cancer.gov/cancertopics/terminologyresources
http://www.cancer.gov/cancertopics/terminologyresources
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

relatively untrained users can contribute. Tag-based authorization combines these qual-
ities into a single system. Subjects and objects are assigned tags, and access is decided
by a policy over those tags. TBA is powerful and flexible through its logical policy,
and achieves nearly the expressiveness of existing logical access control systems. At
the same time, it is simple to describe and allows relatively untrained personnel to as-
sign tags to objects, more fully utilizing a diverse workforce. Tag ontologies can further
simplify both object tagging and policy writing. In addition, our approach to delegation
externalizes the mechanism through which policies are combined, enabling different
sub-policies to be written in distinct languages.

To evaluate TBA, we explored its ability to express common access control policy
idioms and its formal expressive power. We show via simple example instantiations
that TBA is capable of expressing the access matrix, attribute-based, role-based, dis-
cretionary and mandatory access control paradigms. Then, by utilizing the reduction
framework of Tripunitara and Li, we show that TBA is strictly more expressive than
specific, common implementations of these paradigms, namely SDCO (a common ac-
cess matrix system), ARBAC97 (a common role-based system), and BLP (the U.S.
military’s extended mandatory system). Thus, TBA is not only much more intuitive to
describe and use than other current logical authorization systems, but also strictly more
expressive than current extensional access control systems, making it a true hybrid of
these two types of access control metaphors.

References

1. Adam Barth, John C. Mitchell, and Justin Rosenstein. Conflict and combination in privacy
policy languages. In Proceedings of the ACM Workshop on Privacy in the Electronic Society,
2004.

2. Moritz Y. Becker, Cedric Y. Fournet, and Andrew D. Gordon. SecPAL: Design and semantics
of a decentralized authorization language. Journal of Computer Security, 2009.

3. Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework
for reasoning about access control models. ACM Transactions on Information and System
Security, 6(1):71–127, 2003.

4. Elisa Bertino, Elena Ferrari, Francesco Buccafurri, and Pasquale Rullo. A logical framework
for reasoning on data access control policies. In Proceedings of the IEEE Computer Security
Foundations Workshop, 1999.

5. Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authorization mecha-
nism for relational data management systems. ACM Transactions on Information Systems,
17(2):101–140, 1999.

6. Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT Press, 2008.
7. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proceed-

ings of the IEEE Symposium on Security and Privacy, pages 164–173, 1996.
8. Piero A. Bonatti, Sabrina D. di Vimercati, and Pierangela Samarati. A modular approach to

composing access control policies. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 164–173, 2000.

9. Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Reiter. Con-
sumable credentials in logic-based access-control systems. In Proceedings of the Network
and Distributed System Security Symposium, pages 143–157, 2007.

10. Glenn Bruns and Michael Huth. Access-control policies via belnap logic: Effective and effi-
cient composition and analysis. In Proceedings of the IEEE Computer Security Foundations
Symposium, 2008.

11. Laurence Cholvy and Frederic Cuppens. Analyzing consistency of security policies. In
Proceedings of the IEEE Symposium on Security and Privacy, 1997.

12. Jason Crampton. Understanding and developing role-based administrative models. In Pro-
ceedings of the ACM Conference on Computer and Communications Security, pages 158–
167, 2005.

13. Jason Crampton, George Loizou, and Greg Oshea. A logic of access control. The Computer
Journal, 44(1):137–149, 2001.

14. Frederic Cuppens, Laurence Cholvy, Claire Saurel, and Jerome Carrere. Merging security
policies: analysis of a practical example. In Proceedings of the IEEE Computer Security
Foundations Workshop, 1998.

15. John DeTreville. Binder, a logic-based security language. In Proceedings of the IEEE Sym-
posium on Security and Privacy, pages 105–113, May 2002.

16. Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about policies. In
Proceedings of the IEEE Computer Security Foundations Symposium, 2003.

17. Sushil Jajodia, Pierangela Samarati, and V S. Subrahmanian. A logical language for express-
ing authorizations. In Proceedings of the IEEE Symposium on Security and Privacy, pages
31–42, 1997.

18. Ninghui Li, Benjamin Grosof, and Joan Feigenbaum. Delegation logic: A logic-based ap-
proach to distributed authorization. In Proceedings of the ACM Transactions on Information
and System Security, pages 128–171, 2003.

19. Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for trust man-
agement languages. In Proceedings of the Symposium on Practical Aspects of Declarative
Languages, 2003.

20. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the IEEE Symposium on Security and Privacy,
2002.

21. Ninghui Li and Mahesh V. Tripunitara. On safety in discretionary access control. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 96–109, 2005.

22. OWL web ontology language: Semantics and abstract syntax. http://www.w3.org/
TR/owl-semantics/, 2004.

23. Maryam Najafian Razavi and Lee Iverson. Supporting selective information sharing with
people-tagging. In CHI Extended Abstracts, pages 3423–3428, 2008.

24. Carlos Ribeiro, Andre Zuquete, Paulo Ferreira, and Paulo Guedes. SPL: An access control
language for security policies with complex constraints. In Proceedings of the Network and
Distributed System Security Symposium, 2001.

25. Ronald L. Rivest and Butler Lampson. Sdsi - a simple distributed security infrastructure.
Technical report, Massachusetts Institute of Technology, 1996.

26. Michael Sipser. Introduction to the Theory of Computation. Brooks Cole, 1996.
27. Mahesh V. Tripunitara and Ninghui Li. A theory for comparing the expressive power of

access control models. Journal of Computer Security, 15(2):231–272, 2007.
28. U.S. Air Force Scientific Advisory Board. Networking to enable coalition operations. Tech-

nical report, MITRE Corporation, 2004.
29. Qihua Wang, Hongxia Jin, and Ninghui Li. Usable access control in collaborative environ-

ments: Authorization based on people-tagging. In ESORICS, pages 268–284, 2009.
30. Duminda Wijesekera and Sushil Jajodia. Policy algebras for access control - the predicate

case. In Proceedings of the ACM Conference on Computer and Communications Security,
pages 171–180, 2001.

http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/

31. Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess: A logic for dis-
tributed authorization. In Proceedings of the ACM Conference on Computer and Communi-
cations Security, pages 168–179, 2005.

32. Charles C. Zhang and Marianne Winslett. Multitrust: An authorization framework with cus-
tomizable distributed proof construction. In Proceedings of the Joint Workshop on Founda-
tions of Computer Security, Automated Reasoning for Security Protocol Analysis, and Issues
in the Theory of Security, 2008.

A An alternate formalization of tag-based authorization

In this section, we formalize TBA within the definition of access control scheme proposed by
Tripunitara and Li [27].

In Tripunitara and Li’s definition, an access control scheme is a state-transition system
〈Γ, Ψ,Q,`〉, where:

• Γ is a set of states. Each state contains all the information needed to make an access control
decision at any given moment.

• Ψ is a state-transition rule that describes how the system changes state.
• Q is a set of queries. Each query is answered by true or false.
• ` is the entailment relation that determines whether a given query is true or false in a given

state.

In TBA, we assume the existence of:

• T , the set of possible tags.
• I , the set of access rights.
• L, the language used to define the policy.

These components are not defined as part of the state, as they do not change.
TBA is then defined as the state-transition system

〈
ΓT , ΨT , QT ,`T

〉
. Each TBA state γT ∈

ΓT is defined by 〈S,O, tag, P 〉, where:

• S is the set of subjects.
• O is the set of objects.
• tag ⊆ (S ∪O) × T is the tag relation, and contains the pair 〈s, t〉 for each subject s that

has tag t and the pair 〈o, t〉 for each object o that has tag t.
• P is a set of policy sentences, written in language L.

ΨT is defined using the following commands.

command create_object(s, o)
O = O ∪ {o}
tag = tag ∪ {〈o, o.id〉}

command destroy_object(s, o)
if(s has delete for o)

O = O − {o}
tag = tag − {〈o, o.id〉}

command create_subject(s1, s2)
if(s1 can create subjects)

S = S ∪ {s2}
tag = tag ∪ {〈s2, s2.id〉}

command destroy_subject(s1, s2)
if(s1 can delete subject s2)

S = S − {s2}
tag = tag − {〈s2, s2.id〉}

command assign_tags(s, x, T1)

if(s can edit tags for x)
for each t ∈ T1

tag = tag ∪ {〈x, t〉}

command revoke_tags(s, x, T1)
if (u can edit tags for x)

for each t ∈ T1

tag = tag − {〈x, t〉}

command transform_policy(s, P+, P−)
if(s can change P)

P = P − P− ∪ P+

QT includes all queries of the following forms: (1) “Does subject s exist?”, (2) “Does subject
s have tag t?”, (3) “Does object o have tag t?”, (4) “Is policy sentence p in the policy?”, and
(5) “Does subject s have access i to object o?”. `T is defined as follows for queries of each
of the forms above: (1) true if and only if s ∈ S, (2) true if and only if 〈s, t〉 ∈ tag, (3)
true if and only if 〈o, t〉 ∈ tag, (4) true if and only if p ∈ P , and (5) true if and only if
∃T1 ⊆ T, T2 ⊆ T : ∀t1 ∈ T1, 〈o, t1〉 ∈ tag ∧ ∀t2 ∈ T2, 〈s, t2〉 ∈ tag ∧ ∃p ∈ P that grants
subjects with tag set T2 access i to objects with tag set T1 under language L.

B Comparison to SDCO

In this section, we formalize a common access matrix-based access control scheme, strict dis-
cretionary access control with change of ownership (SDCO), and show that TBA is strictly more
expressive than SDCO.

B.1 Formalization of SDCO

In SDCO, we assume the existence of I , the set of access rights, including own. SDCO is then
defined as the state-transition system

〈
ΓS , ΨS , QS ,`S

〉
. Each SDCO state γS ∈ ΓS is defined

by 〈S,O,M〉, where:

• S is the set of subjects.
• O is the set of objects.
• M : S ×O → 2I is the access matrix.

ΨS is defined using the following commands.

command create_object(s, o)
O = O ∪ {o}
M [s, o] = own

command destroy_object(s, o)
if own ∈ M [s, o]

O = O − {o}

command grant_own(s, s′, o)
if own ∈ M [s, o]

M [s′, o] = M [s′, o] ∪ {own}
M [s, o] = M [s, o] − {own}

And, for each i ∈ (I − own):

command grant_i(s, s′, o)
if own ∈ M [s, o]

M [s′, o] = M [s′, o] ∪ {i}

command revoke_i(s, s′, o)
if own ∈ M [s, o]

M [s′, o] = M [s′, o] − {i}

QS includes all queries of the form “Does subject s have access i to object o?”. `S is defined as
true if and only if i ∈M [s, o].

B.2 Reduction from SDCO

Theorem 9. There exists a state-matching reduction from SDCO to TBA.

Proof. By construction. Presented is a mapping, and proof that the mapping satisfies the two
properties for it to be a state-matching reduction by Tripunitara and Li’s definition 7.

The mapping, σ, needs to be able to map every 〈γ, ψ〉 in SDCO to σ(〈γ, ψ〉) =
〈
γT , ψT

〉
in TBA, as well as every q in SDCO to σ(q) = qT in TBA.

Let σ(γ) = γT =〈Sγ , Oγ , tagγ , Pγ〉 where

Sγ =S ∪ {sim admin}
Oγ =O

tagγ ={∀s ∈ S : 〈s, s.id〉} ∪ {∀o ∈ O : 〈o, o.id〉}
Pγ ={∀s ∈ S, o ∈ O,∀i ∈M [s, o] : “s.id : i : o.id”}

Here, Lγ is the set of sentences of the form “t1 : i : t2” where t1, t2 ∈ T and i ∈ I . A policy
P is consistent only if ∀o ∈ O∃s ∈ S : “s.id : own : o.id” ∈ P ∧ t ∈ T 6= s.id =⇒
“t : own : o.id” /∈ P . The inference procedure for Lγ is as follows. The sentence “t1 : i : t2”
grants any subject with the tag t1 the right i to objects with the tag t2.

Since queries in SDCO have the same form as form-(4) queries in TBA, let σ(q) = qT = q.
Let γ0 be a start state in SDCO. Produce γT0 in TBA using σ. Given γk such that γ0

∗7→ψγk,
we show that there exists γTk such that γT0

∗7→ψT γ
T
k where, for all q, γTk ` qT if and only if

γk ` q.
Consider the case where γk = γ0, then let γTk = γT0 . In γT0 = σ(γ0), s will be given right i

over o only using the following sentence in P : “s.id : i : o.id”. Such a line will be entered if and
only if i ∈M [s, o], so for all q, γTk ` qT if and only if γk ` q.

Next, consider some arbitrary γk reachable from γ0. We construct γTk that is reach-
able from γT0 and that answers every qT the same way γk answers q, as follows.
Consider each state-transition in the sequence γ0 7→ψ γ1 7→ψ . . . 7→ψ γk in the
SDCO system. If the state-transition in SDCO is the execution of create object(s,
o), we execute transform policy(sim admin, {“s.id : own : o.id”}, {})
followed by create object(s, o). If the state-transition in SDCO is the exe-
cution of destroy object(s, o), we execute destroy object(s, o), fol-
lowed by transform policy(sim admin, {}, {∀t, i : “t : i : o.id”}). If the
state-transition in SDCO is the execution of grant own(s, s′, o), we execute
transform policy(sim admin, {“s′.id : own : o.id”}, {“s.id : own : o.id”}).

If the state-transition in SDCO is the execution of grant i(s, s′, o), then we
execute transform policy(sim admin, {“s′.id : i : o.id”}, {}). If the state-
transition in SDCO is the execution of revoke i(s, s′, o), then we execute
transform policy(sim admin, {}, {“s′.id : i : o.id”}).

Now, consider each possible query q. Since q is of the form “Does subject s have access i to
object o?”, qT is also “Does subject s have access i to object o?”. In this case, γk ` q if and only
if i has been granted to s by the owner of o. This is true if and only if we have added the policy
sentence “s.id : i : o.id” to P . Thus, γk ` q if and only if γTk ` qT .

Therefore, we’ve proven property (1) for state-matching reductions.
We prove that property (2) for a state-matching reduction is satisfied by our mapping also by

construction. Let γT0 be the start-state in TBA corresponding to γ0, the start-state in SDCO. Then,
if γTk is a state reachable from γT0 and qT is a query in TBA whose corresponding query in SDCO
is q, we construct γk, a state in SDCO reachable from γ0 as follows. For each sentence in P of
the form “s.id : own : o.id”, we execute create object(s, o). Then, for each sentence in
P of the form “s′.id : i : o.id” where i 6= own, we execute grant i(s, s′, o), where s is
the owner of o.

Since q is of the form “Does subject s have access i to object o?”, qT is also “Does subject s
have access i to object o?”, which means that γTk ` qT if and only if “s.id : i : o.id” ∈ P . The
condition that qT is true is the only one in which we would have added the right i to M [s, o], and
therefore γk ` q if and only if γTk ` qT .

Therefore, we’ve proven property (2) for state-matching reductions, and proven that our map-
ping σ is a state-matching reduction.

B.3 Reduction to SDCO

Theorem 10. There exists no state-matching reduction from TBA to SDCO.

Proof. By contradiction. Assume there exists a state-matching reduction from TBA to SDCO.
In TBA, adopt as γ a state where s ∈ S, o ∈ O, P = {}, and L is as described in Theorem 9
except the inference procedure is augmented as follows. The sentence “t1 : i∗ : t2”, in addition
to granting subjects with tag t1 the right i∗ over objects with tag t2, also grants such subjects the
right i′ over the same objects, regardless of whether P also contains the sentence “t1 : i′ : t2”.
Languages like this can be used to express a heirarchy of rights, for example the execute right
carries with it automatic read right. Let q1 = “Does s have right i∗ to o?” and let q2 = “Does s
have right i′ to o?”.

Observe that γ ` ¬q1 ∧ ¬q2. Consider the state γS in SDCO that is equivalent to γ (if there
does not exist one, the contradiction of the existence of a state-matching reduction is found). We
know that γS ` ¬qS1 ∧ ¬qS2 . Observe that, given i∗ 6= own, there exists γ̃S reachable from γS

such that γ̃S ` qS1 ∧ ¬qS2 via the execution of grant i∗. However, the only γ̃ such that γ̃ ` q1
is that in which ∃t1, t2 ∈ T : “t1 : i∗ : t2” ∈ P ∧ 〈s, t1〉, 〈o, t2〉 ∈ tag. Due to the inference
procedure of L, such a γ̃ ` q1 ∧ q2, leaving no such γ̃ ` q1 ∧ ¬q2, meaning there is no γ̃
that is equivalent to γ̃S . This contradicts property (2) for state-matching reductions, giving us the
needed contradiction and proof of the non-existence of a state-matching reduction from TBA to
SDCO.

C Comparison to ARBAC97

In this section, we formalize a common role-based access control scheme used in corporate envi-
ronments, ARBAC97, and show that TBA is strictly more expressive than ARBAC97.

C.1 Formalization of ARBAC97

In ARBAC97, we assume the existence of the countably infinite sets U (users), P (permissions)
andR (roles), which will not be part of the state. ARBAC97 is then defined as the state-transition
system

〈
ΓA, ΨA, QA,`A

〉
. Each ARBAC97 state γA ∈ ΓA is defined by 〈UA,PA,RH,AR〉,

where:

• UA ⊆ U ×R contains the pair 〈u, r〉 for each user u that is assigned to role r.
• PA ⊆ P ×R contains the pair 〈p, r〉 for each permission p that is assigned to the role r.
• RH is the role-hierarchy, and for r1, r2,∈ R, r1 � r2 ∈ RH means that all users that are

members of r1 are also conceptually members of r2, and all permissions that are assigned to
r2 are authorized to users that are members of r1.

• AR ⊂ R is a set of administrative roles. Our definition does not model changes toAR since
it is only changed by a trusted administrator who must do the security analysis to ensure that
the resulting state is acceptable.

A role range, ξ, is written as (r1, r2) where r1, r2 ∈ R, and every role that satisfies r1 � r∧r �
r2 ∧ r 6= r1 ∧ r 6= r2 is in the role range ξ. The set of all role ranges is designated as Ξ .
Preconditions for commands in ΨA are based on sets URA97, PRA97, and RRA97, which
define:

can assign ⊆ AR× CR× Ξ
can revoke ⊆ AR× Ξ
can assignp ⊆ AR× CR× Ξ
can revokep ⊆ AR× Ξ
can modify ⊆ AR× Ξ

where CR is a set of prerequisite conditions, and a prerequisite condition is a propositional logic
formula over non-administrative roles. ΨA, then, is defined using the following commands.

command assignUser(a, u, r)
if ∃ 〈ar, c, ξ〉 ∈ can assign such that
〈a, ar〉 ∈ UA ∧ u satisfies c ∧ r ∈ ξ

UA = UA ∪ {〈u, r〉}

command revokeUser(a, u, r)
if ∃ 〈ar, ξ〉 ∈ can revoke such that
〈a, ar〉 ∈ UA ∧ r ∈ ξ

UA = UA − {〈u, r〉}

command assignPermission(a, p, r)
if ∃ 〈ar, c, ξ〉 ∈ can assignp such that
〈a, ar〉 ∈ UA ∧ p satisfies c ∧ r ∈ ξ

PA = PA ∪ {〈u, r〉}

command revokePermission(a, p, r)
if ∃ 〈ar, ξ〉 ∈ can revokep such that
〈a, ar〉 ∈ UA ∧ r ∈ ξ

PA = PA − {〈p, r〉}

command addToRange(a, ξ, r)

if ∃ 〈ar, ξ〉 ∈ can modify such that
〈a, ar〉 ∈ UA

RH = RH ∪ {r1 � r, r � r2}
where ξ = (r1, r2) ∧ r 6= r1 ∧ r 6= r2

command removeFromRange(a, ξ, r)
if ∃ 〈ar, ξ〉 ∈ can modify such that
〈a, ar〉 ∈ UA

RH = RH − {r1 � r, r � r2}
where ξ = (r1, r2) ∧ r 6= r1 ∧ r 6= r2

command addAsSenior(a, r, s)
if ∃ 〈ar, ξ〉 ∈ can modify such that
〈a, ar〉 ∈ UA ∧ r ∈ ξ ∧ s ∈ ξ

RH = RH ∪ {r � s}

command removeAsSenior(a, r, s)
if ∃ 〈ar, ξ〉 ∈ can modify such that
〈a, ar〉 ∈ UA ∧ r ∈ ξ ∧ s ∈ ξ

RH = RH − {r � s}

QA includes all queries of the following forms: (1) “Does user u belong to role r?”, (2) “Is
role r authorized to have permission p?”, (3) “Is role r1 a senior of role r2?”, and (4) “Is user
u authorized to have permission p?”. `A is defined as follows for queries of each of the forms
above: (1) true if and only if 〈u, r〉 ∈ UA, (2) true if and only if 〈p, r〉 ∈ PA, (3) true if and
only if r1 � r2 ∈ RH , and (4) true if and only if ∃r1, r2 ∈ R : 〈u, r1〉 ∈ UA ∧ 〈p, r2〉 ∈
PA ∧ r1 � r2 ∈ RH .

C.2 Reduction from ARBAC97

Theorem 11. There exists a state-matching reduction from ARBAC97 to TBA.

Proof. By construction. Presented is a mapping, and proof that the mapping satisfies the two
properties for it to be a state-matching reduction.

The mapping, σ, needs to be able to map every 〈γ, ψ〉 in ARBAC97 to σ(〈γ, ψ〉) =〈
γT , ψT

〉
in TBA, as well as every q in ARBAC97 to σ(q) = qT in TBA.

Let σ(γ) = γT =〈Sγ , Oγ , tagγ , Pγ〉 where

Sγ =U
Oγ =P
tagγ ={∀u ∈ U : 〈u, u.id〉} ∪ UA ∪ {∀p ∈ P : 〈p, p.id〉}
Pγ ={∀〈p, r〉 ∈ PA : “r : p.id”} ∪ {∀r1 � r2 ∈ RH : “r1 � r2”}

Here, Lγ is the set of sentences of the form “t1 : t2” where t1, t2 ∈ T , and sentences of the form
“t1 � t2” where t1, t2 ∈ T . The inference procedure for Lγ is as follows. A sentence “t1 : t2”
grants any subject with the tag t1 access to objects with tag t2. A sentence “t1 � t2” implicitly
grants any subject with the tag t1 the additional tag t2. That is, this sentence grants all permissions
assigned to subjects with tag t2 also to subjects with tag t1.

Where q = “Does user u belong to role r?”, let σ(q) = qT = “Does subject u have tag r?”.
Where q = “Is role r authorized to have permission p?”, let qT = “Is policy sentence “r : p.id” in

the policy?”. Where q = “Is role r1 a senior of role r2?”, let qT = “Is policy sentence “r1 � r2”
in the policy?”. Where q = “Is user u authorized to have permission p?”, let qT = “Does subject
u have access i0 to object p?”. Note that in this last form, we use i0 to denote the only access
right, since ARBAC97 uses permissions, not object/right pairs.

Let γ0 be a start state in ARBAC97. Produce γT0 in TBA using σ. Given γk such that
γ0
∗7→ψγk, we show that there exists γTk such that γT0

∗7→ψT γ
T
k where, for all q, γTk ` qT if and

only if γk ` q.
Consider the case where γk = γ0, then let γTk = γT0 . Then, consider each possible query q.

If q is of the form “Does user u belong to role r?”, qT is “Does subject u have tag r?”. In this
case, γk ` q if and only if 〈u, r〉 ∈ tag, in which case 〈u, r〉 ∈ tagγ . Therefore, γTk ` qT if and
only if γk ` q. If q is of the form “Is role r authorized to have permission p?”, qT is “Is policy
sentence “r : p.id” in the policy?”. In this case, γk ` q if and only if 〈p, r〉 ∈ PA, in which case
“r, p.id” ∈ Pγ . Therefore, γTk ` qT if and only if γk ` q. If q is of the form “Is role r1 a senior
of role r2?”, qT is “Is policy sentence “r1 � r2” in the policy?”. In this case, γk ` q if and only
if r1 � r2 ∈ RH , in which case “r1 � r2” ∈ P . Therefore, γTk ` qT if and only if γk ` q. If
q is of the form “Is user u authorized to have permission p?”, qT is “Does subject u have access
i0 to object p?”. In this case, γk ` q if and only if ∃r1, r2 ∈ R : 〈u, r1〉 ∈ UA ∧ 〈p, r2〉 ∈
PA ∧ r1 � r2 ∈ RH , in which case 〈u, r1〉 ∈ tagγ ∧ “r2 : p.id”, “r1 � r2” ∈ Pγ . Therefore,
γTk ` qT if and only if γk ` q.

Thus, when γk = γ0, γTk ` qT if and only if γk ` q.
Next, consider some arbitrary γk reachable from γ0. We construct γTk that is reachable from

γT0 and that answers every qT the same way γk answers q, as follows. Consider each state-
transition in the sequence γ0 7→ψ γ1 7→ . . . 7→ γk in the ARBAC97 system. If the state-transition
in ARBAC97 is the execution of assignUser(a, u, r), we execute assign tags(a,
u, {r}). If the state-transition in ARBAC97 is the execution of revokeUser(a, u, r),
we execute revoke tags(a, u, {r}). If the state-transition in ARBAC97 is the execution
of assignPermission(a, p, r), we execute transform policy(a, {“r : p.id”},
{}). If the state-transition in ARBAC97 is the execution of revokePermission(a,
p, r), we execute transform policy(a, {}, {“r : p.id”}). If the state-transition
in ARBAC97 is the execution of addToRange(a, ξ, r), where ξ = (r1, r2), r 6=
r1, r 6= r2, we execute transform policy(a, {“r1 � r”, “r � r2”}, {}). If the state-
transition in ARBAC97 is the execution of removeFromRange(a, ξ, r), where ξ =
(r1, r2), r 6= r1, r 6= r2, we execute transform policy(a, {}, {“r1 � r”, “r � r2”}.
If the state-transition in ARBAC97 is the execution of addAsSenior(a, r, s), we exe-
cute transform policy(a, {“r � s”}, {}). If the state-transition in ARBAC97 is the
execution of removeAsSenior(a, r, s), we execute transform policy(a, {},
{“r � s”}).

Now, consider each possible query q. If q is of the form “Does user u belong to role r?”,
qT is “Does subject u have tag r?”. In this case, γk ` q if and only if 〈u, r〉 ∈ UA. Such
a state would be caused by an execution of assignUser, in which case we would have ex-
ecuted assign tags to cause a state γTk in which 〈u, r〉 ∈ tagγ . Therefore, γTk ` qT if
and only if γk ` q. If q is of the form “Is role r authorized to have permission p?”, qT is “Is
policy sentence “r : p.id” in the policy?”. In this case, γk ` q if and only if 〈p, r〉 ∈ PA.
Such a state would be caused by an execution of assignPermission, in which case we
would have executed transform policy to cause a state γTk in which “r, p.id” ∈ Pγ .
Therefore, γTk ` qT if and only if γk ` q. If q is of the form “Is role r1 a senior of role
r2?”, qT is “Is policy sentence “r1 � r2” in the policy?”. In this case, γk ` q if and only
if r1 � r2 ∈ RH . Such a state would be caused by an execution of addToRange or
addAsSenior, in which case we would have executed transform policy to cause a state
γTk in which “r1 � r2” ∈ P . Therefore, γTk ` qT if and only if γk ` q. If q is of the form “Is

user u authorized to have permission p?”, qT is “Does subject u have access i0 to object p?”. In
this case, γk ` q if and only if ∃r1, r2 ∈ R : 〈u, r1〉 ∈ UA ∧ 〈p, r2〉 ∈ PA ∧ r1 � r2 ∈ RH .
Such a state must be caused by an execution of assignUser, in which case we would
have executed assign tags; assignPermission, in which case we would have executed
transform policy; and either addToRange or addAsSenior, in which case we would
have executed transform policy. This combinition of commands would have resulted in a
state in TBA in which 〈u, r1〉 ∈ tagγ ∧ “r2 : p.id”, “r1 � r2” ∈ Pγ . Therefore, γTk ` qT if and
only if γk ` q.

Thus, in all cases, γTk ` qT if and only if γk ` q.
Therefore, we’ve proven property (1) for state-matching reductions.
We prove that property (2) for a state-matching reduction is satisfied by our mapping also by

construction. Let γT0 be a start-state in TBA corresponding to γ0, the start-state in ARBAC97.
Then, if γTk is a state reachable from γT0 and qT is a query in TBA whose corresponding query
in ARBAC97 is q, we construct γk, a state in ARBAC97 reachable from γ0 as follows. For
each sentence in P of the form “r : p.id”, we execute assignPermission(ua, p, r),
where ua ∈ U is an administrator. For each sentence in P of the form “r1 � r2”, we execute
addAsSenior(ua, r1, r2), where ua ∈ U is an administrator. For each 〈u, r〉 ∈ tag where
u ∈ S ∧ r 6= u.id, we execute assignUser(ua, u, r), where ua ∈ U is an administrator.

Now, consider each possible query q. If q is of the form “Does user u belong to role r?”, qT

is “Does subject u have tag r?”. In this case, γTk ` qT if and only if 〈u, r〉 ∈ tagγ , in which case
we would have executed assignUser(ua, u, r), creating a state in which 〈u, r〉 ∈ UR.
Therefore, γTk ` qT if and only if γk ` q. If q is of the form “Is role r authorized to have
permission p?”, qT is “Is policy sentence “r : p.id” in the policy?”. In this case, γTk ` qT if and
only if “r, p.id” ∈ Pγ , in which case we would have executed assignPermission(ua, p,
r), creating a state in which 〈p, r〉 ∈ PA. Therefore, γTk ` qT if and only if γk ` q. If q is of
the form “Is role r1 a senior of role r2?”, qT is “Is policy sentence “r1 � r2” in the policy?”.
In this case, γTk ` qT if and only if “r1 � r2” ∈ P , in which case we would have executed
addAsSenior(ua, r1, r2), creating a state in which r1 � r2 ∈ RH . Therefore, γTk ` qT
if and only if γk ` q. If q is of the form “Is user u authorized to have permission p?”, qT is
“Does subject u have access i0 to object p?”. In this case, γTk ` qT if and only if 〈u, r1〉 ∈
tagγ ∧“r2 : p.id”, “r1 � r2” ∈ Pγ , in which case we would have executed assignUser(ua,
u, r1), assignPermission(ua, p, r2), and addAsSenior(ua, r1, r2), creating
a state in which ∃r1, r2 ∈ R : 〈u, r1〉 ∈ UA ∧ 〈p, r2〉 ∈ PA ∧ r1 � r2 ∈ RH . Therefore,
γTk ` qT if and only if γk ` q.

Thus, in all cases, γTk ` qT if and only if γk ` q.
Therefore, we’ve proven property (2) for state-matching reductions, and proven that our map-

ping σ is a state-matching reduction.

C.3 Reduction to ARBAC97

Theorem 12. There exists no state-matching reduction from TBA to ARBAC97.

Proof. By contradiction. Assume there exists a state-matching reduction from TBA to AR-
BAC97. In TBA, adopt as γ a state where s ∈ S, p∗, p′ ∈ O, P = {}, and L is as described in
theorem 11 except the inference procedure is augmented as follows. The sentence “t : p∗.id”, in
addition to granting subjects with tag t access to objects with tag p∗.id, also grants such subjects
access to objects with tag p′.id, regardless of whether P also contains the sentence “t : p′.id”.
This type of language may be useful when we want to have related permissions that imply one
another. It is similar to L from the proof of theorem 10, but uses related objects rather than related

rights to the same object since ARBAC97 uses permissions instead of object/right pairs. Let q1 =
“Does s have right i0 to p∗?” and let q2 = “Does s have right i0 to p′?”.

Observe that γ ` ¬q1 ∧ ¬q2. Consider the state γA in ARBAC97 that is equivalent to
γ (if there does not exist one, the contradiction of the existence of a state-matching reduction
is found). We know that γA ` ¬qA1 ∧ ¬qA2 . Observe that there exists γ̃A reachable from γA

such that γ̃A ` qA1 ∧ ¬qA2 via the execution of assignPermission and/or assignUser.
However, the only γ̃ such that γ̃ ` q1 is that in which ∃r1, r2 ∈ R : 〈s, r1〉 ∈ UA ∧ 〈p∗, r2〉 ∈
PA ∧ r1 � r2 ∈ RH . In this case, due to the inference procedure of L, γ̃ ` q1 ∧ q2, leaving
no such γ̃ such that γ̃ ` q1 ∧ ¬q2, so there is no γ̃ that is equivalent to γ̃A. This contradicts
property (2) for state-matching reductions, giving us the needed contradiction and proof of the
non-existence of a state-matching reduction from TBA to ARBAC97.

D Comparison to BLP

In this section, we formalize the access control scheme used by the U.S. military that has both
mandatory and discretionary components, the Bell-La Padula scheme (BLP), and show that TBA
is strictly more expressive than BLP.

D.1 Formalization of BLP

In BLP, we assume the existence of the set of access attributes (A = {e, r, a, w}), the finite
set used for both clearances and classifications (C), and the countably infinite set of possible
compartments (P). These do not change and are thus not part of the state. A security level is an
element of C × 2P . BLP is then defined as the state-transition system

〈
ΓB , ΨB , QB ,`B

〉
. Each

BLP state γB ∈ ΓB is defined by 〈S,O, b,M, fS , fC , fO〉, where:

• S is the set of subjects.
• O is the hierarchical set of objects.
• b ⊆ S × O × A is the current access set, and contains the tuple 〈s, o, i〉 for each subject s

that has current access i to object o.
• M : S ×O → 2A is the access matrix.
• fS : S → C × 2P is the maximum security level function of subjects.
• fC : S → C × 2P is the current security level function of subjects.
• fO : O → C × 2P is the security level function of objects.

ΨB is defined using the following commands. Here, P(o) denotes the parent object of object o,
and C(o) denotes the set of children objects of object o. Commands with names ending in xi exist
for each xi ∈ A.

command get-read(s, o)
if r ∈ M [s, o] ∧ fS(s) ∝fO(o) ∧
(s is trusted ∨ fC(s) ∝fO(o))

b = b ∪ {〈s, o, r〉}

command get-append(s, o)
if a ∈ M [s, o] ∧
(s is trusted ∨ fO(o) ∝fC(s))

b = b ∪ {〈s, o, a〉}

command get-execute(s, o)
if e ∈ M [s, o]

b = b ∪ {〈s, o, e〉}

command get-write(s, o)
if w ∈ M [s, o] ∧ fS(s) ∝fO(o) ∧
(s is trusted ∨ fC(s) = fO(o))

b = b ∪ {〈s, o, w〉}

command release-xi(s, o)
b = b − {〈s, o, xi〉}

command give-xi(s1, s2, o)
if (o is not the root of O ∧ w ∈ M [s1, P(o)]) ∨
(o is the root of O ∧ s1 is allowed to give access to
the root object)

M [s2, o] = M [s2, o] ∪ {xi}

command rescind-xi(s1, s2, o)
if (o is not the root of O ∧ w ∈ M [s1, P(o)]) ∨
(o is the root of O ∧ s1 is allowed to rescind access to
the root object)

b = b − {〈s2, o, xi〉}
M [s2, o] = M [s2, o] − {xi}

command create-object(s, o, l)
if w or a ∈ M [s, o] ∧ l ∝fO(o)

fO = fO ∪ {〈onew, l〉}
O = O ∪ {onew} with onew as a child of o

command delete-object-group(s, o)
if o is not the root of O ∧ w ∈ M [s, P(o)]

for all s, x, for any oi such that
oi = o ∨ oi is below o in O

b = b − {〈s, oi, x〉}
M [s, oi] = {}
O = O − {oi}

command change-subject-current-security-level(s, l)
if fS ∝l ∧
(s is trusted ∨ ∗-property would be satisfied)

fC(s) = l

command change-object-security-level(s, o, l)
if the following conditions are true:
• s is trusted ∧ fC(s) ∝fO(o)
∨ fC(s) ∝l ∧ l ∝fO(o)

• for all si such that 〈si, o, r〉 ∈ b
∨ 〈si, o, w〉 ∈ b, fC(s) ∝l

• the change won’t violate ∗-property

• l ∝fO(P(o)) ∧ ∀ c ∈ C(o) : fO(c) ∝l
• s is allowed to change security level of o

fO(o) = l

QB includes all queries of the following forms: (1) “Does subject s have discretionary access
i to object o?”, (2) “Does subject s have current access i to object o?”. `T is defined as follows
for queries of each of the forms above: (1) true if and only if i ∈M [s, o], (2) true if and only if
〈s, o, i〉 ∈ b.

D.2 Reduction from BLP

Theorem 13. There exists a state-matching reduction from BLP to TBA.

Proof. By construction. Presented is a mapping, and proof that the mapping satisfies the two
properties for it to be a state-matching reduction.

The mapping, σ, needs to be able to map every 〈γ, ψ〉 in BLP to σ(〈γ, ψ〉) =
〈
γT , ψT

〉
in

TBA, as well as every q in BLP to σ(q) = qT in TBA.

Let σ(γ) = γT =〈Sγ , Oγ , tagγ , Pγ〉 where

Sγ =S

Oγ =O

tagγ ={∀s ∈ S : 〈s, fS(s)[c]〉} ∪ {∀s ∈ S∀p ∈ fS(s)[p] : 〈s, p〉}∪
{∀o ∈ O : 〈o, fO(o)[c]〉} ∪ {∀o ∈ O∀p ∈ fO(o)[p] : 〈o, p〉}

Pγ ={∀〈s, o, i〉 ∈ b : “b ∼ s : o : i”}∪
{∀s ∈ S : “fC ∼ s : fC(s)[c] : fC(s)[p]”}∪
{∀〈s, o, i〉 ∈M : “M ∼ s : o : i”}∪
{∀o ∈ O : “O ∼ o : P(o)”}

Here, Iγ = A, and Lγ is the set of sentences of the form “φ ∼ s : o : i” where φ ∈ {b,M},
s ∈ S, o ∈ O, i ∈ I , the set of sentences of the form “fC ∼ s : c : {p1, . . . , pk}” where
s ∈ S, c ∈ C, p1, . . . , pk ∈ P , and the set of sentences of the form “O ∼ o1 : o2”, where
o1, o2 ∈ O. The inference procedure forLγ is as follows. A sentence “b ∼ s : o : i” gives subject
s the access i to object o, unless this would violate the ∗-property, in which case it has no effect.
A sentence “M ∼ s : o : i” gives subject s discretionary access i to object o, which is only used
to answer certain types of queries. The sentence “fC ∼ s : c : {p1, . . . , pk}” makes the effective
security clearance for subject s be the lower of c and fS(s)[c], and its effective compartment
set the intersection of {p1, . . . , pk} and fS(s)[p]. Multiple lines of this form with the same s
have the same effect as one line with the highest of the clearances and the union of all specified
compartments. The sentence “O ∼ o1 : o2” declares that o2 is the parent object of o1, and thus
the delete right to o2 is denied while o1 exists.

Where q = “Does subject s have discretionary access i to object o?”, let σ(q) = qT = “Is
policy sentence “M ∼ s : o : i” in the policy?”. Where q = “Does subject s have current access
i to object o?”, let qT = “Does subject u have access i to object o?”.

Let γ0 be a start state in BLP. Produce γT0 in TBA using σ. Given γk such that γ0
∗7→ψγk, we

show that there exists γTk such that γT0
∗7→ψT γ

T
k where, for all q, γTk ` qT if and only if γk ` q.

Consider the case where γk = γ0, then let γTk = γT0 . Then, consider each possible query
q. If q is of the form “Does subject s have discretionary access i to object o?”, qT is “Is policy
sentence “M ∼ s : o : i” in the policy?”. In this case, γk ` q if and only if i ∈M [s, o], in which

case “M ∼ s : o : i” ∈ Pγ . Therefore, γTk ` qT if and only if γk ` q. If q is of the form “Does
subject s have current access i to object o?”, qT is “Does subject u have access i to object o?”. In
this case, γk ` q if and only if 〈s, o, i〉 ∈ b, in which case “b ∼ s : o : i” ∈ Pγ . This will make
the qT true as long as ∗-property isn’t violated by the access. However, this access can not violate
∗-property since the preconditions to the BLP commands would not have allowed it to be added
to b if it did. Therefore, for all q, γTk ` qT if and only if γk ` q.

Thus, when γk = γ0, γTk ` qT if and only if γk ` q.
Next, consider some arbitrary γk reachable from γ0. We construct γTk that is reach-

able from γT0 and that answers every qT the same way γk answers q, as follows.
Consider each state-transition in the sequence γ0 7→ψ γ1 7→ . . . 7→ γk in the BLP
system. If the state-transition in BLP is the execution of get-xi(s, o), we execute
transform policy(s, {“b ∼ s : o : xi”}, {}). If the state-transition in BLP is
the execution of release-xi(s, o), we execute transform policy(s, {},
{“b ∼ s : o : xi”}). If the state-transition in BLP is the execution of give-xi(s1,
s2, o), we execute transform policy(s, {“M ∼ s2 : o : xi”}, {}). If the
state-transition in BLP is the execution of rescind-xi(s1, s2, o), we execute
transform policy(s, {}, {“M ∼ s2 : o : xi”}). If the state-transition in BLP is
the execution of create-object(s, o, l), we execute create object(s, o),
followed by assign tags(s, o, {l[c]} ∪ l[p]). If the state-transition in BLP is the
execution of delete-object-group(s, o), we execute destroy object(s, oi)
for each oi ∈ C(o), then execute destroy object(s, o). This must be done recur-
sively so that no object is deleted before its children. If the state-transition in BLP is the
execution of change-subject-current-security-level(s, l), we execute
transform policy(s, {“fC ∼ s : l[c] : l[p]”}, {“fC ∼ s : fC(s)[c] : fC(s)[p]”}. If
the state-transition in BLP is the execution of change-object-security-level(s,
o, l), we execute assign tags(s, o, {l[c]} ∪ l[p]), followed by revoke tags(s,
o, Ti), where Ti is the set of tags that o previously had (i.e., o’s previous classification and
compartments) that have been invalidated.

Now, consider each possible query q. If q is of the form “Does subject s have discretionary
access i to object o?”, qT is “Is policy sentence “M ∼ s : o : i” in the policy?”. In this case,
γk ` q if and only if i ∈ M [s, o]. Such a state would be caused by an execution of give-i,
in which case we would have executed transform policy to cause a state γTk in which
“M ∼ s : o : i” ∈ Pγ . Therefore, γTk ` qT if and only if γk ` q. If q is of the form “Does
subject s have current access i to object o?”, qT is “Does subject u have access i to object o?”.
In this case, γk ` q if and only if 〈s, o, i〉 ∈ b. Such a state would be caused by an execution
of get-i, in which case we would have executed transform policy to cause a state γTk
in which “b ∼ s : o : i” ∈ Pγ . If this action violates ∗-property, it will not have the effect of
granting the access, but in this case the command will fail at the preconditions in BLP. Therefore,
γTk ` qT if and only if γk ` q.

Thus, in all cases, γTk ` qT if and only if γk ` q.
Therefore, we’ve proven property (1) for state-matching reductions.
We prove that property (2) for a state-matching reduction is satisfied by our mapping also

by construction. Let γT0 be a start-state in TBA corresponding to γ0, the start-state in BLP.
Then, if γTk is a state reachable from γT0 and qT is a query in TBA whose corresponding
query in BLP is q, we construct γk, a state in BLP reachable from γ0 as follows. For each
o ∈ O, we find every 〈o, t〉 ∈ tag and build the set To including each t from this set of tu-
ples. Then, we execute change-object-security-level(sa, o, 〈To ∩ C, To ∩ P 〉),
where sa is an administrator. For each o ∈ O, we execute create-object, being careful
to observe the sentences in P of the form “O ∼ o1 : o2” describing the heirarchy of objects.
For each sentence in P of the form “M ∼ s : o : i”, we execute give-i(sa, s, o), where

sa is an administrator. For each sentence in P of the form “fC ∼ s : c : {p1, . . . , pk}”, we
execute change-subject-current-security-level(s, 〈c, {p1, . . . , pk}〉. For each
sentence in P of the form “b ∼ s : o : i”, we execute get-i(s, o).

Now, consider each possible query q. If q is of the form “Does subject s have discretionary
access i to object o?”, qT is of the form “Is policy sentence “M ∼ s : o : i” in the policy?”. In
this case, γTk ` qT if and only if “M ∼ s : o : i” ∈ P , in which case we would have executed
give-i(sa, s, o), creating a state in which i ∈ M [s, o]. Therefore, γTk ` qT if and only
if γk ` q. If q is of the form “Does subject s have current access i to object o?”, qT is of
the form “Does subject u have access i to object o?”. In this case, γTk ` qT if and only if
“b ∼ s : o : i” ∈ P (and the access wouldn’t violate ∗-property), in which case we would have
executed get-i(s, o), creating a state in which 〈s, o, i〉 ∈ b. Therefore, γTk ` qT if and only
if γk ` q.

Thus, in all cases, γTk ` qT if and only if γk ` q.
Therefore, we’ve proven property (2) for state-matching reductions, and proven that our map-

ping σ is a state-matching reduction.

D.3 Reduction to BLP

Theorem 14. There exists no state-matching reduction from TBA to BLP.

Proof. By contradiction. Assume there exists a state-matching reduction from TBA to BLP. In
TBA, adopt as γ a state where s1, s2 ∈ Sa ⊆ S, “ON” /∈ P , and L is as described in theorem 13
except the inference procedure is augmented as follows. The sentence “ON” grants all subjects
in Sa all rights over all objects, and the absence of this sentence implicitly denies all subjects in
Sa any right over any object. This type of language may be useful, for example, when we have a
set of power users whose full access we wish to enable and disable. Let q1 = “Does subject s1
have right e to object o?” and let q2 = “Does subject s2 have right e to object o?”.

Observe that γ ` ¬q1 ∧ ¬q2. Consider the state γB in BLP that is equivalent to γ (if there
does not exist one, the contradiction of the existence of a state-matching reduction is found).
We know that γB ` ¬qB1 ∧ ¬qB2 . Observe that there exists γ̃B reachable from γB such that
γ̃B ` qB1 ∧ ¬qB2 via the execution of get-execute(s1, o). However, the only γ̃ such that
γ̃ ` q1 is that in which “ON” ∈ P . In this case, due to the inference procedure of L, γ̃ ` q1∧q2,
leaving no such γ̃ such that γ̃ ` q1∧¬q2, so there is no γ̃ that is equivalent to γ̃B . This contradicts
property (2) for state-matching reductions, giving us the needed contradiction and proof of the
non-existence of a state-matching reduction from TBA to BLP.

	TBA: A Hybrid of Logic and Extensional Access Control Systems

