Dynamic Access Control Using
Identity-Based Encryption

®

William C. Garrison Il and Adam J. Lee
Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

Synonyms

Cryptographically enforced dynamic access con-
trol; Practical revocation in cryptographic access
control; Private-key constructions for dynamic
access control

Definition

Access control describes the process of
restricting the set of resources (objects) that
some requesting entity (subject) is permitted
to access. The information stored by an access
control system for the purposes of making access
decisions is referred to as the protection state of
the access control system. While simple at its
core, the modeling and analysis of access control
systems is complicated when this protection state
is dynamic: i.e., when policies can be altered by
administrative users or when subjects and objects
can be added to or removed from the system.
As we will discuss, the state transitions induced
by dynamism can add substantial complexity to
both formal analyses of access control systems

© Springer Science+Business Media LLC 2021

and the efficient enforcement of access controls
using cryptographic constructions.

Background

Let us consider the enforcement of access
controls using cryptographic constructions, in
order to reduce the trust that must be placed
in a software-based gatekeeper that otherwise
makes all access decisions (e.g., a cloud storage
provider). Assume that the service provider is
honest-but-curious: it is trusted to carry out the
protocols correctly but will try to eavesdrop
passively on the file contents. In essence, one
can prevent this eavesdropping by encrypting
files and distributing file keys only to those
subjects that should be granted access (compared
to capability-based access control systems).
To grant access to multiple users at once, and
simplify distribution of file keys, we can share
multiple copies of the file key, one encrypted to
each permitted user (see Fig. 1a). When the need
arises to revoke one of the users’ access, though,
we must consider that this user may still have a
copy of the file key. This may not be an issue in
the short term (since they may also have cached
a copy of the file itself) but will certainly be
undesirable as the file contents change. To revoke
more thoroughly, we must rekey the file: generate
a new key, decrypt and re-encrypt the file, and
distribute the new key to all remaining permitted
users (see Fig. 1b). At first glance, this may seem

S. Jajodia et al. (eds.), Encyclopedia of Cryptography, Security and Privacy,

https://doi.org/10.1007/978-3-642-27739-9_1452-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-642-27739-9_1452-1&domain=pdf
http://link.springer.com/Cryptographically enforced dynamic access control
http://link.springer.com/Practical revocation in cryptographic access control
http://link.springer.com/Private-key constructions for dynamic access control
https://doi.org/10.1007/978-3-642-27739-9_1452-1

(F Ky)
ol
S8

)

|

J

E

or i
Aci

e A

Dynamic Access Control Using Identity-Based Encryption

b <Ab b > OY

[‘f /w,

Dynamic Access Control Using Identity-Based Encryption, Fig. 1 Cryptographically sharing a file using hybrid
cryptography. (a) Sharing with two users. (b) Sharing with one user, after a revocation

like a satisfactory solution. Unfortunately, many
issues present themselves upon closer inspection.

First, note that most deployed access control
systems are much more expressive than our
simple example construction, which grants access
to files individually. Consider the classical role-
based access control (RBAC) scheme, which
relies on a level of indirection (roles) to reduce
the administrative overheads of granting multiple
permissions that are often assigned together
(e.g., access to the files associated with some
job function). In RBAC, subjects are assigned to
roles, and permissions over objects are granted to
roles. Subject s is granted access to file f if and
only if there exists a role r such that s is assigned
to r and access to f is granted to r. Consider
the convenience of using roles as another level of
cryptographic indirection, much like we already
use to distribute file keys. For instance, generate
an IBE key per role. For each file, f;, granted to
roles ry, ..., rg, we can share f;’s file key, K,
with each of the roles ({K 1} K,,, where K,, is a
public key for role r;), and share copies of the
role keys with each user ({K; YK, for subject u,
if u is a member of r;). This allows convenience
when granting many permissions at once: adding
auser to arole can be modeled by providing them
with a single private key, granting a permission
to a role can be accomplished by adding another
copy of its file key, etc. These ideas generalize
naturally to more expressive forms of private-key
encryption, such as ABE, PE, etc.

Now, imagine an RBAC protection state with
many subjects, roles, and files, including many
assignments between them. Removing one sub-
ject, s, from a single role, r, could have many
effects: s should lose access to all files, f;, that
were granted via r (note, however, that these
files might also be granted to s via some other
role r'). Similarly, revoking a single file, f, from
role, r, will cause any subject s assigned to r to
lose access to f (again, unless they have access
through another role). As we can see, one small
change in the protection state can change the
result to many access queries. In fact, this is one
of the most significant features of RBAC com-
pared to simpler access control systems and one
that is almost entirely ignored when evaluating
cryptographic constructions for enforcing RBAC
unless dynamism is explicitly considered.

Regarding the choice of cryptosystem, note
that using entirely symmetric-key cryptography
is untenable due to key distribution issues. Using
IBE to distribute file keys (perhaps indirectly
via role keys) is convenient, but using entirely
private-key cryptography (including for encrypt-
ing files) is similarly impractical due to efficiency
concerns. Thus, realistic constructions require the
use of hybrid cryptography, with files encrypted
using per-file symmetric keys, and these file keys
are then encrypted for distribution using IBE
(or other public-key cryptosystem). These addi-
tional details complicate both security analysis
and implementation.

Dynamic Access Control Using Identity-Based Encryption

Next, consider the RBAC revocation scenarios
presented above, recalling that revoking access to
an encrypted resource is typically accomplished
by rekeying: decrypting the file, re-encrypting
with a new key, and distributing the new key to
the remaining permitted subjects. This operation
can be especially burdensome in the scenarios
described above, as a single state transition (revo-
cation of a role from a subject or a permission
from a role) can cause many files to be rekeyed
at once. If the service provider is not trusted
to view file contents (usually the case when
cryptographic constructions are used), naive con-
structions would also require that an administra-
tor download each file, rekey, and re-upload a
new ciphertext. Such complications affect both
analysis and efficiency. Regarding the former,
consider proving that a cryptographic construc-
tion never reveals a file’s contents to any subject
except those who would have access under a
gatekeeper-enforced RBAC and the complexity
of making such an argument when adversaries
can cache keys from previously granted permis-
sions. Regarding the latter, consider that a sin-
gle “action” could require hundreds of files to
be downloaded, decrypted, re-encrypted to new
keys, and re-uploaded, all before distributing new
keys to potentially many still-authorized users.
We will now look at each of these tasks and their
feasibility with practical cryptographic construc-
tions used to enforce dynamic access control.

Security Analysis

Much work has been done in proving that an
implementation of an access control system—
perhaps cryptographic, perhaps using another
access control system—is correct (i.e., it allows
all accesses permitted by the policy that it is
enforcing) and secure (i.e., it denies all accesses
prohibited by the policy that it is enforcing). One
approach for this type of analysis is a simulation-
based one, where one access control system, S,
is shown to be more expressive than another, 7,
if § can simulate each state, query, and transition
in T. There are numerous forms that such a
simulation can take (Garrison and Lee 2015), and

the approach has been successfully extended
to access control enforced by cryptographic
constructions (Garrison et al. 2016).

An alternate approach borrows from the proof
techniques typically used in the cryptographic
literature, using the concept of multiplayer games
assessing an adversary’s ability to circumvent the
controls imposed by the system. Ferrara et al.
(2013) point out that, “few of the existing cryp-
tographic access-control schemes come with pre-
cise guarantees, and the gap between the pol-
icy specification and the implementation being
analyzed only informally, if at all.” They thus
define a cryptographic game where the adver-
sary attempts to create a scenario in which they
have access to a file, f, even though the RBAC
policy being enforced symbolically would not
allow such an access. Specifically, Ferrara et al.
presented a cryptographic construction to enforce
RBAC access controls faithfully. Intuitively, their
proof imagines an adversary who can be given
access to any role at any time, except for those
that can access a target file, f. Then, viewing
leaked (encrypted) files from the service provider,
the adversary must guess whether the ciphertext
file f represents plaintext file fo or f; (of the
same length). If the adversary is unable to suc-
ceed (more often than chance), then the construc-
tion is said to have securely enforced the RBAC
policy: despite being able to manipulate their own
role membership nearly arbitrarily, the adversary
is unable to exploit this to gain a permission that
the underlying policy would not permit.

Proofs of either form can seem straightfor-
ward, perhaps even obvious, once observed.
Showing that a construction that symbolically
enforces a policy also computationally enforces
it may seem an unnecessary step. However, it
is extremely important that such proofs are
written regarding cryptographic enforcement,
without which no concrete guarantees can be
made. Ferrara et al. argue that, “[In order] to
present a rigorous approach to the analysis of
cryptographic enforcement of access control...a
formal definition of computational enforcement
of a policy is an important (if not the most
important) part” A similar point is made by
Garrison et al. (2016) when tying changes in

the symbolic access control policy to changes
in the computational feasibility of recovering a
plaintext. Consider, for example, the following
subtle scenario. An adversary joins, and then
leaves, role r, which is granted no permissions.
The user temporarily gains the role key for r, but
since it is not used to encrypt symmetric keys for
any files, this may seem harmless (notably, naive
constructions may choose not to rekey anything,
since no permissions were lost). However, later, if
access to a file is granted to r, a copy of its file key
will then be encrypted to role r, and the adversary
may use a cached copy of the role key to access
the file. Thus, a secure implementation must
rekey role r even when doing so is seemingly
free of effects (i.e., does not protect any current
resources).

Despite the significant effort of both works,
however, it becomes apparent that there is much
to be done in proving the security of practical
cryptographic constructions for enforcing
dynamic access control. Note that the construc-
tion presented by Ferrara et al. (2013) does not
utilize hybrid cryptography, modeling a system
where files are encrypted using (expensive)
private-key cryptography (specifically, predicate
encryption as a generalization of attribute-based
encryption). As we have discussed, this is crucial
to practical implementation, as PE is infeasible
for most scenarios with large files. Adding this
additional level of indirection would no doubt
complicate an already fragile proof.

Furthermore, rekeying is done in the naive
way: to generate a new role key, a new role is
effectively created (e.g., with a sequence number
added to the name) and the new key is dis-
tributed to all remaining members. More princi-
pled solutions for revocation in modern private-
key encryption have been proposed, including
those using broadcast encryption (e.g., Park et al.
2015) and key homomorphism (e.g., Wang et al.
2016). Each adds additional complexity and secu-
rity assumptions and would necessitate substan-
tial further work to prove security to the level of
rigor presented by Ferrara et al. (2013) and Gar-
rison and Lee (2015). In fact, more practical (i.e.,
efficient) constructions, such as that presented
by Qi and Zheng (2019), assume a significant

Dynamic Access Control Using Identity-Based Encryption

weakening of the system model compared to that
used in the aforementioned works, in that any
single user can reveal a single key to the provider
and allow the latter to read all files. Such subtle
issues are indicative of the more wide-reaching
requirement that cryptographic constructions are
formally proved to enforce the desired policy,
within the precise desired threat model.

Efficiency

In addition to the correctness and security of
cryptographically enforced access controls, it is
also important to consider the efficiency of these
constructions. While protection of static states
is straightforward, the previous section showed
that much care must be taken to correctly enforce
cryptographic access controls in an evolving,
dynamic system. One example, presented by
Garrison et al. (2016), attempts to quantify the
costs of revocation within a cryptographically
enforced RBAC system. Unlike Ferrara et al.
(2013), which focused on proving security and
largely ignored efficiency, Garrison et al. made
many security concessions in an effort to provide
a very conservative view of the costs of using
these types of cryptographic access control
constructions. Hybrid cryptography was utilized,
with identity-based encryption (or, alternately,
standard public-key encryption) used to encrypt
per-file symmetric keys. Lazy revocation allowed
a re-encryption to be deferred to the next write
(which is not a vulnerability if it is assuming that
a motivated attacker caches the files to which
they have access).

Regardless of these concessions, the costs (in
terms of the number of private-key encryptions
and other metrics) of deploying such a
construction were found to be intractable for most
organizations. In a realistic scenario, for instance,
revoking a single user from a single role could
incur a cost of hundreds to thousands of IBE
(or similar) encryptions (to distribute new “role
keys”), with dozens to hundreds of files being
marked for re-encryption. It was also necessary
to trust the reference monitor to enforce write
permissions (i.e., refuse to save a new version

Dynamic Access Control Using Identity-Based Encryption

of a file uploaded by a user without the relevant
access permission), an assumption also made by
Ferrara et al. (2013) and Qi and Zheng (2019).
An alternative is identified that allows reading
users to verify a write themselves, which requires
only that the service provider can timestamp
writes reliably. However, as with the additional
efficiency tricks discussed above in Security
Analysis, this adds complexity to any security
analysis of the construction and modifies the
system model in a nontrivial way. Using onion
encryption layers (Qi and Zheng 2019) further
improves efficiency by offloading re-encryption
to the provider but also modifies the threat model
as noted above.

Open Problems and Future Directions

The biggest open question in this space revolves
around making cryptographic access control
enforcement constructions more efficient without
sacrificing the formally proved security of
the existing constructions. Several primitives
are discussed above in Security Analysis that
may help, but none have been included in a
full security proof a la (Ferrara et al. 2013;
Garrison et al. 2016), nor have they been
evaluated for absolute efficiency relative to the
alternatives. We note that primitives for broadcast
encryption presented up to now incur a variety of
additional costs relative to other cryptosystems.
For instance, depending on the scheme, the length
of broadcast updates, key sizes, and/or the sizes
of other data components can grow as the number
of users increases. Similarly, implementations of
key homomorphism thus far are dependent on
the problem of Learning with Errors, leaving
it an open question whether such primitives
are possible with more standard assumptions.
Interestingly, recent work has explored the
implementation of efficient FE systems by
leveraging trusted hardware primitives while also
establishing formal foundations for these types
of constructions (Fisch et al. 2017). However,
the literature currently lacks a cryptographically
enforced dynamic access control system that is

both practical and formally proven to be correct
and secure.

Cross-References

Access Control Policies, Models, and Mecha-
nisms

Attribute-Based Access Control

Broadcast Encryption

Identity Based Encryption

Proxy Re-encryption

User Revocation in Identity Based Encryption
and Attribute Based Encryption

References

Ferrara AL, Fuchsbauer G, Warinschi B (2013) Cryp-
tographically enforced RBAC. In: 2013 IEEE 26th
Computer Security Foundations Symposium, pp 115—
129. https://doi.org/10.1109/CSF.2013.15

Fisch B, Vinayagamurthy D, Boneh D, Gorbunov S
(2017) Iron: functional encryption using Intel SGX. In:
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS’17.
Association for Computing Machinery, New York, pp
765-782. https://doi.org/10.1145/3133956.3134106

Garrison WC, Lee AJ (2015) Decomposing, comparing,
and synthesizing access control expressiveness simu-
lations. In: 2015 IEEE 28th Computer Security Foun-
dations Symposium, pp 18-32. https://doi.org/10.1109/
CSF2015.9

Garrison WC, Shull A, Myers S, Lee AJ (2016) On
the practicality of cryptographically enforcing dynamic
access control policies in the cloud. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp 819-838.
https://doi.org/10.1109/SP.2016.54

Park S, Lee K, Lee DH (2015) New constructions of
revocable identity-based encryption from multilinear
maps. IEEE Trans Inf Forensics Secur 10(8):1564—
1577. https://doi.org/10.1109/TIFS.2015.2419180

Qi S, Zheng Y (2019) Crypt-DAC: cryptographically
enforced dynamic access control in the cloud. IEEE
Trans Dependable Secure Comput 1-1. https://doi.org/
10.1109/TDSC.2019.2908164

Wang F, Mickens J, Zeldovich N, Vaikuntanathan V
(2016) Sieve: cryptographically enforced access
control for user data in untrusted clouds. In: 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). USENIX Association,
Santa Clara, pp 611-626. https://www.usenix.org/c
onference/nsdil6/technical-sessions/presentation/wang-
frank

http://link.springer.com/Access Control Policies, Models, and Mechanisms
http://link.springer.com/Attribute-Based Access Control
http://link.springer.com/Broadcast Encryption
http://link.springer.com/Identity Based Encryption
http://link.springer.com/Proxy Re-encryption
http://link.springer.com/User Revocation in Identity Based Encryption and Attribute Based Encryption
https://doi.org/10.1109/CSF.2013.15
https://doi.org/10.1145/3133956.3134106
https://doi.org/10.1109/CSF.2015.9
https://doi.org/10.1109/CSF.2015.9
https://doi.org/10.1109/SP.2016.54
https://doi.org/10.1109/TIFS.2015.2419180
https://doi.org/10.1109/TDSC.2019.2908164
https://doi.org/10.1109/TDSC.2019.2908164
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang-frank

	Dynamic Access Control Using Identity-Based Encryption
	Synonyms
	Definition
	Background
	Security Analysis
	Efficiency
	Open Problems and Future Directions
	Cross-References
	References

