Discrete Structures for Computer Science

William Garrison
bill@cs.pitt.edu
6311 Sennott Square

Lecture #11: Integers and Modular Arithmetic

Based on materials developed by Dr. Adam Lee
Today’s Topics

Integers and division
- The division algorithm
- Modular arithmetic
- Applications of modular arithmetic
What is number theory?

Number theory is the branch of mathematics that explores the integers and their properties.

Number theory has many applications within computer science, including:

- Organizing data
- Encrypting sensitive data
- Developing error correcting codes
- Generating “random” numbers
- ...

We will only scratch the surface...
The notion of divisibility is one of the most basic properties of the integers

Definition: If a and b are integers and $a \neq 0$, we say that a divides b if there is an integer c such that $b = ac$. We write $a \mid b$ to say that a divides b, and $a \nmid b$ to say that a does not divide b.

Mathematically: $a \mid b \iff \exists c \in \mathbb{Z} \ (b = ac)$

Note: If $a \mid b$, then

- a is called a factor of b
- b is called a multiple of a

We’ve been using the notion of divisibility all along!

- $E = \{x \mid x = 2k \land k \in \mathbb{Z}\}$
Division examples

Examples:

- Does 4 | 16?
 - Yes, 16 = 4 \times 4
- Does 3 | 11?
 - No, because 11/3 is not an integer
- Does 7 | 42?
 - Yes, 42 = 7 \times 6

Question: Let \(n \) and \(d \) be two positive integers. How many positive integers not exceeding \(n \) are divisible by \(d \)?

Answer: We want to count the number of integers of the form \(dk \) that are less than \(n \). That is, we want to know the number of integers \(k \) with \(0 \leq dk \leq n \), or \(0 \leq k \leq n/d \). Therefore, there are \(\lfloor n/d \rfloor \) positive integers not exceeding \(n \) that are divisible by \(d \).
Important properties of divisibility

Property 1: If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$

Property 2: If $a \mid b$, then $a \mid bc$ for all integers c.

Property 3: If $a \mid b$ and $b \mid c$, then $a \mid c$.
Theorem: Let \(a \) be an integer and let \(d \) be a positive integer. There are unique integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).

For historical reasons, the above theorem is called the **division algorithm**, even though it isn’t an algorithm!

Terminology: Given \(a = dq + r \)
- \(a \) is called the **dividend**
- \(d \) is called the **divisor**
- \(q \) is called the **quotient**
- \(r \) is called the **remainder**
- \(q = a \div d \)
- \(r = a \mod d \)
Examples

Question: What are the quotient and remainder when 123 is divided by 23?

Answer: We have that $123 = 23 \times 5 + 8$. So the quotient is $123 \text{ div } 23 = 5$, and the remainder is $123 \text{ mod } 23 = 8$.

———

Question: What are the quotient and remainder when -11 is divided by 3?

Answer: Since $-11 = 3 \times -4 + 1$, we have that the quotient is -4 and the remainder is 1.

Recall that since the remainder must be non-negative, $3 \times -3 - 2$ is not a valid use of the division theorem!
Many programming languages use the **div** and **mod** operations

For example, in Java, C, and C++

- `/` corresponds to **div** when used on integer arguments
- `%` corresponds to **mod**

```java
public static void main(String[] args) {
    int x = 2;
    int y = 5;
    float z = 2.0;
    System.out.println(y/x); // Prints out 2, not 2.5!
    System.out.println(y%x); // Prints out 1
    System.out.println(y/z); // Prints out 2.5
}
```

This can be a source of **many** errors, so be careful in your future classes!
Problem 1: Does:
 a. 12 | 144 ?
 b. 4 | 67 ?
 c. 9 | 81 ?

Problem 2: What are the quotient and remainder when
 a. 64 is divided by 8?
 b. 42 is divided by 11?
 c. 23 is divided by 7?
 d. -23 is divided by 7?

Problem 3: Show that if a is an integer and d is an integer greater than 1, then the quotient and remainder obtained dividing a by d are $\left\lfloor \frac{a}{d} \right\rfloor$ and $a - d \left\lfloor \frac{a}{d} \right\rfloor$, respectively.
Sometimes, we care only about the remainder of an integer after it is divided by some other integer.

Example: What time will it be 22 hours from now?

Answer: If it is 6am now, it will be \((6 + 22) \mod 24 = 28 \mod 24 = 4\) am in 22 hours.
Definition: If \(a \) and \(b \) are integers and \(m \) is a positive integer, we say that \(a \) is congruent to \(b \) modulo \(m \) if \(m \mid (a - b) \). We write this as \(a \equiv b \pmod{m} \).

Note: \(a \equiv b \pmod{m} \) iff \(a \mod m = b \mod m \).

Examples:
- Is 17 congruent to 5 modulo 6?
- Is 24 congruent to 14 modulo 6?

Theorem: Let m be a positive integer. The integers a and b are congruent modulo m ($a \equiv b \pmod{m}$) iff there is an integer k such that $a = b + km$.

Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- $(a + c) \equiv (b + d) \pmod{m}$
- $ac \equiv bd \pmod{m}$
Congruencies have many applications within computer science

Today we’ll look at three:

1. Hash functions
2. The generation of pseudorandom numbers
3. Cryptography
Hash functions allow us to quickly and efficiently locate data

Problem: Given a large collection of records, how can we find the one we want quickly?

Solution: Apply a hash function that determines the storage location of the record based on the record’s ID. A common hash function is \(h(k) = k \mod n \), where \(n \) is the number of available storage locations.

<table>
<thead>
<tr>
<th>Memory:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID: 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID: 276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID: 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(42 \mod 8 = 2 \)
\(276 \mod 8 = 4 \)
\(23 \mod 8 = 7 \)
Many areas of computer science rely on the ability to generate pseudorandom numbers.
Congruencies can be used to generate pseudorandom sequences

Step 1: Choose
- A modulus \(m \)
- A multiplier \(a \)
- An increment \(c \)
- A seed \(x_0 \)

Step 2: Apply the following
- \(x_{n+1} = (ax_n + c) \mod m \)

Example: \(m = 9, \ a = 7, \ c = 4, \ x_0 = 3 \)
- \(x_1 = 7x_0 + 4 \mod 9 = 7 \times 3 + 4 \mod 9 = 25 \mod 9 = 7 \)
- \(x_2 = 7x_1 + 4 \mod 9 = 7 \times 7 + 4 \mod 9 = 53 \mod 9 = 8 \)
- \(x_3 = 7x_2 + 4 \mod 9 = 7 \times 8 + 4 \mod 9 = 60 \mod 9 = 6 \)
- \(x_4 = 7x_3 + 4 \mod 9 = 7 \times 6 + 4 \mod 9 = 46 \mod 9 = 1 \)
- \(x_5 = 7x_4 + 4 \mod 9 = 7 \times 1 + 4 \mod 9 = 11 \mod 9 = 2 \)
- ...
The field of cryptography makes heavy use of number theory and congruencies. Cryptography is the study of secret messages.

Uses of cryptography:
- Protecting medical records
- Storing and transmitting military secrets
- Secure web browsing
- ...

Congruencies are used in cryptosystems from antiquity, as well as in modern-day algorithms.

Since modern algorithms require quite a bit of background to discuss, we’ll examine an ancient cryptosystem.
The Caesar cipher is based on congruencies

To encode a message using the Caesar cipher:

- Choose a shift index s
- Convert each letter A-Z into a number 0-25
- Compute $f(p) = p + s \mod 26$

Example: Let $s = 9$. Encode “ATTACK”.

- ATTACK = 0 19 19 0 2 10
- $f(0) = 9$, $f(19) = 2$, $f(2) = 11$, $f(10) = 19$
- Encrypted message: 9 2 2 9 11 19 = JCCJLT
Decryption involves using the inverse function

That is, \(f^{-1}(p) = p - s \mod 26 \)

Example: Assume that \(s = 3 \). Decrypt the message “UHWUHDW”.

- UHWUHDW = 20 7 22 20 7 3 22
- \(f^{-1}(20) = 17 \), \(f^{-1}(7) = 4 \), \(f^{-1}(22) = 19 \), \(f^{-1}(3) = 0 \)
- Decrypted result: 17 4 19 17 4 0 19 = RETREAT
In-class exercises

Problem 3:
 a. Is 4 congruent to 8 mod 3?
 b. Is 45 congruent to 12 mod 9?
 c. Is 21 congruent to 28 mod 7?

Problem 4: The message “QBOKD MYPPOO” was encrypted with the Caesar cipher using $s = 10$. Decrypt it.
Number theory is the study of integers and their properties

Divisibility, modular arithmetic, and congruency are used throughout computer science

Next time:

- Prime numbers, GCDs, integer representation (Section 4.2 and 4.3)