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1. INTRODUCTION

The process of making informed authorization decisions in dynamic environ-
ments where trust relationships cannot be determined a priori is widely ac-
cepted as a difficult task. This is particularly true in context-rich environ-
ments, such as pervasive computing spaces, as the set of permissible actions
may depend on the physical context of the space. This context can be sampled
through the use of sensors deployed throughout the environment. To address
this complexity, several rule-based systems have been designed for specify-
ing and checking authorization policies in pervasive computing environments
(e.g., see Al-Muhtadi et al. [2003], Bacon et al. [2002], Covington et al. [2001],
and Myles et al. [2003]). Recently, frameworks for constructing and validat-
ing distributed proofs have been proposed to address the limitations of using
centralized knowledge bases for making authorization decisions [Bauer et al.
2005; Minami and Kotz 2005; Winslett et al. 2005].

In authorization systems based on distributed proving, resource access re-
quests are permitted if a resource owner can construct a well-formed proof tree
whose root is a logical statement granting the requester access to the resource.
The topology of a proof tree shows the logical dependencies among the facts in
the tree; that is, the leaves of this tree represent base facts, while intermediate
nodes represent inferences made using these facts. Such a proof tree need not be
formed solely from facts in the resource owner’s local knowledge base; subtrees
of a proof may be produced by other entities in the network provided that the re-
source owner trusts the integrity of information provided by these entities (e.g.,
see Bauer et al. [2005], Minami and Kotz [2005], and Winslett et al. [2005]). In
some systems, information release policies may prevent portions of a subproof
from being revealed to certain nodes in the proof tree [Minami and Kotz 2005].
An important observation is that the logical leaves of a distributed proof tree
form one possible view of the state of the environment in which the proof was
constructed. Resource access is granted because, in that view of the system, it
was possible to construct a proof tree justifying the access request. If the facts
making up a proof tree represent stable assertions (i.e., facts whose validity
will not change), then this view is actually a snapshot of the system and the
semantics of policy satisfaction remain the same as in centralized proof sys-
tems. However, if any facts in the proof tree are not constant, then in some
circumstances, it is possible to form a proof tree justifying access to a particu-
lar resource that would have been denied in any centralized system. That is,
an inconsistent view can lead a prover to think that certain logical facts were
true simultaneously when, in fact, they were not. Clearly, this can lead to the
permission of undesirable accesses to system resources.

For example, consider a hospital wired with sensors such as occupancy de-
tectors, location tracking devices, and door lock sensors. Now, a clinician, Alice,
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decides to use the projector located in her office to review the medical records
of several patients that she is working with. In order for the system to permit
the use of the projector to view medical records, it must be the case that the
occupancy of Alice’s office is one, Alice is located in her office, and the door to her
office is locked. When Alice requests this access, the system might first check
that the occupancy of her office is one and then proceed to check that Alice
is currently located in her office. As this check is being made, Bob enters the
room and closes the door behind him, which automatically locks. The system
determines that Alice is located in her office and then checks that the door is
locked; since the door is locked, the medical records are displayed on the projec-
tor. This is a clear violation of the policy protecting patient records that might
have legal ramifications, as Bob may not be authorized to view the records
being projected. In addition to this type of accidental violation of system view
consistency, intentional attacks on the system are also possible. As a result,
we cannot simply assume that distributed proof protocols sample a consistent
system state, we must ensure that this occurs by developing algorithms that
enforce this type of constraint.

The adverse effects of inconsistent views on authorization systems has been
examined previously by Lee and Winslett [2006, 2008]. In this article, the
authors focus on studying the properties of systems in which all attestations
used during proof construction were encoded in certificates issued by one or
more trusted certificate authorities (CAs). The solutions for enforcing the use
of consistent states presented in this work rely on the timing and sequencing
of checks for certificate revocation that can be made using protocols such as
OCSP [Myers et al. 1999] or COCA [Zhou et al. 2002]. Unfortunately, these
solutions cannot be used in proof construction frameworks that rely on sim-
ple digital signatures or keyed MACs to authenticate proof facts, including
many of those designed to be used in pervasive computing or sensor network
environments.

In this article, we build on the results presented by Lee and Winslett [2006,
2008] and show how to ensure that distributed proofs constructed using these
more general forms of trusted information can be formed by sampling consistent
system states without impeding on the autonomy of nodes in the system (e.g.,
by requiring participation in a wide-scale transaction-management protocol).
Further, we present solutions to the consistency problem that work even if some
details of a proof tree are hidden from the query issuer by information flow poli-
cies; for comparison, the solutions presented by Lee and Winslett assumed that
the policy evaluator had complete knowledge of the proof tree formed during the
protocol. Although we focus our presentation on authorization systems based
on distributed proving, the techniques described in this article are applicable
to any system in which autonomous entities wish to leverage decentralized
information to make decisions in a potentially adversarial environment.

The rest of this article is organized as follows. In Section 2, we overview back-
ground material regarding the distributed proof construction protocol that we
will modify to enforce view consistency constraints. Section 3 formally defines
our system model and the levels of view consistency that we wish to enforce in
this article. In Section 4, we present modifications to an existing distributed
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Fig. 1. Structure of an authorization server.

proof construction protocol to enable the use of three types of consistent views
when making authorization decisions. Further, we present proofs that the se-
curity and privacy properties of the underlying proof system have not been
altered by our modifications. We quantitatively evaluate the performance im-
pact of our consistency enforcement schemes in Section 5 and review related
work in Section 6. We then present our conclusions in Section 7.

2. BACKGROUND

In this section, we discuss the distributed proof construction protocol presented
by Minami and Kotz [2005], as later sections of this article focus on modifying
this protocol to ensure that authorization decisions are made using consistent
states. Unfortunately, space limitations prevent us from presenting this proof
system in its entirety, so we instead present several examples that illustrate
the key features of this system; interested readers can refer to Minami and
Kotz [2005] for a more in-depth treatment of this proof construction system.

We chose to explore the consistency problem within the context of this pro-
tocol because it allows portions of a proof tree to be hidden from certain enti-
ties participating in the construction of the proof—including the node issuing
the query—whereas most other distributed proof frameworks assume that the
querying node gathers all supporting evidence locally, prior to making a deci-
sion. This is significant, as the ability to construct proofs with hidden subtrees
implies that the derivation rules in each entity’s knowledge base can remain
private, rather than being disclosed to other parties during the construction of
a proof. This allows each principal to limit the release of potentially sensitive
data to a greater degree than is possible in other proof systems. However, as
we will see in Section 4.5, the techniques developed in this article for use in
the Minami-Kotz proof construction system can also be simplified and applied
to other distributed proof systems with less-restrictive properties.

2.1 Structure of the Authorization Server

Figure 1 shows the structure of an authorization server consisting of a knowl-
edge base and an inference engine. The knowledge base stores both authoriza-
tion policies (represented as Datalog rules) and facts including context infor-
mation. For instance, the rule grant(P) :- role(P, doctor), location(P, hospital)
grants a principal P access to a resource if he or she is located in the hospital
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Fig. 2. Sample proof tree.

and is a doctor. The context server publishes context events and updates facts
in the knowledge base dynamically. The inference engine receives authoriza-
tion queries from remote servers, such as resource servers processing users’
access requests. The inference engine then attempts to derive logical proofs
justifying these queries using the facts in its local knowledge base and possibly
even interactions with remote parties. Figure 2 could be constructed based on
the aforementioned rule. If the inference engine cannot construct a proof, it re-
turns a proof that contains a false value. In the open environment of pervasive
computing, each server could belong to a different administrative domain.

2.2 Proof Decomposition

Multiple authorization servers in different administrative domains can coop-
erate to handle authorization queries in a peer-to-peer manner. These peer-to-
peer interactions are guided by each entity’s integrity policies, which specify
sets of entities trusted to handle particular types of queries. For example, if
Alice specifies the integrity policy trust(location(P, L)) = {Bob}, then she trusts
Bob to accurately answer queries regarding the location of other entities. In
the most basic case, the principal who issues a query trusts the principal who
handles this query in terms of the integrity of the query result. As such, the
handler principal need not disclose the entire proof tree that she generates, she
needs only to return a proof that states whether the fact in the query was true.
In general, however, the querier may not completely trust the query handler
and thus her integrity policies might place constraints on the rules used by
the handler to generate the proof tree. In this case, a more complete proof tree,
whose intermediate nodes are digitally signed, would need to be returned by
the handler. This way, the querier can verify that her integrity policies were
respected.

Figure 3 describes one possible collaboration between a querier and handler.
Suppose that host A run by principal Alice, who owns a projector, receives an
authorization query ?grant(Dave, projector) that asks whether Dave is granted
access to that projector. Since Alice’s authorization policy in her knowledge base
refers to a requester’s location (i.e., location(P, room112 )), Alice issues a query
?location(Dave, room112) to host B run by Bob. Alice chooses Bob, because
Bob satisfies Alice’s integrity policies for queries of the type location(P, L).
Bob processes the query from Alice, because Alice satisfies Bob’s confiden-
tiality policies for queries of the type location(P, L) as defined in Bob’s policy
acl(location(P, L)) = {Alice}. Bob derives the fact that Dave is in room112
from the location of his device using the facts location(pda15 , room112 ) and
owner(Bob, pda15 ). However, he only needs to return a proof that contains a
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Fig. 3. Remote query between two principals. Alice is a principal who maintains a projector, and
Bob is a principal who runs a location server.

Fig. 4. Enforcement of confidentiality policies. The first item in a proof tuple is a receiver principal,
and the second item is a proof tree encrypted with the receiver’s public key.

single root node that states that location(Dave, room112 ) is true because Alice
believes Bob’s statement about people’s location (i.e., location(P, L)) according
to her integrity policies. The proof of the query is thus decomposed into two
subproofs maintained by Alice and Bob.

2.3 Enforcement of Confidentiality Policies

Each fact provider maintains a set of confidentiality policies that determine
which entities are authorized to receive the facts that she provides. These
policies are enforced by encrypting a query result (along with a querier-provided
nonce to ensure freshness) using the public key of an authorized receiver.1 Each
query is accompanied by a list of upstream principals who could possibly receive
the answer of the query; this enables the handler to choose an authorized
recipient from the list of upstream principals that satisfies her confidentiality
policies. It is, therefore, possible to obtain an answer for some initial query
even when some number of intermediate principals in the distributed proof
do not satisfy the confidentiality policies of a fact provider. Figure 4 shows an

1For efficiency, the implemented system uses a hybrid encryption scheme in which a principal’s
public key is used to set up a shared symmetric key used for encryption.
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example collaboration among principals p0, p1, p2, and p3. When principal p0

issues an authorization query q0 to principal p1, p1 issues a subsequent query
q1, which causes principal p2’s queries q2 and q3. Since a receiver principal of
a proof might not be a principal who issues a query, a reply for a query is a
tuple (pi, (pf)Ki ), where pi is an identity of a receiver principal and (pf)Ki is an
encrypted proof with the receiver’s public key. We associate a receiver principal
identity with an encrypted proof so that a principal who receives an encrypted
fact can decide whether to attempt to decrypt that encrypted fact. We assume
that, in this example, each principal who issues a query trusts the integrity of
the principal who receives that query in terms of the correctness of whether
the fact in the query is true or not. For example, p0’s integrity policies contain
a policy trust(q0) = {p1}.

Suppose that query q1’s result (i.e., true or false) depends on the results of
queries q2 and q3, which are handled by principals p3 and p4, respectively, and
that p3 and p4 choose principals p0 and p1, respectively, as receivers, since
p2 does not satisfy their confidentiality policies. Because principal p2 cannot
decrypt the results from principals p3 and p4, p2 encrypts those results with the
public key of principal p1, which p2 chose as a receiver. Principal p2 forwards
the encrypted results from p3 and p4 because the query result of q1 is the
conjunction of those results. Principal p1 decrypts the encrypted result from
p2 and obtains the encrypted results originally sent from principals p3 and p4.
Since p1 is a receiver of the proof from p4, p1 decrypts the proof that contains a
true value. Since a query result for q0 depends on the encrypted proof from p3,
principal p1 forwards it in the same way. The principal p0 finally decrypts it
and obtains an answer for query q0. The key observation here is that principal
p0 is not aware of the fact that the query result is originally produced by
principal p3.

3. DEFINITIONS

We begin this section by describing the system model within which the Minami-
Kotz distributed proof construction protocol discussed in Section 2 was designed
to be used. We then show that existing solutions to the view consistency problem
are not applicable due to fundamental differences between system models.
Lastly, we formally define the view consistency problem within the context of
our system model and present the definitions of four important view consistency
levels.

3.1 System Model

Distributed proof construction protocols were designed to be used in open-
system environments consisting of a possibly infinite set of autonomous enti-
ties, E . Each entity e ∈ E possesses one or more public key certificates that can
be used to authenticate messages signed by e or to encrypt messages that are to
be sent to e. These certificates are made publicly available by one or more key
servers or through the use of decentralized peer-to-peer protocols. Without loss
of generality, we will assume that each node uses only one public key certificate
during the construction of any single distributed proof. We place no limitations
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on the temporal duration of executions of the proof construction protocol, nor
do we assume any level of clock synchronization exists between entities in E .

All evidence used during the construction of a distributed proof takes the
form of assertions signed with the providing entity’s private key. As was de-
scribed in Section 2, the proof construction process is assumed to be policy
directed. Each entity maintains a collection of integrity policies that indicate
which other entities are trusted to answer different types of queries; adher-
ence to these integrity policies can be checked by verifying the signatures on
responses to any issued subqueries. Each entity e also maintains a collection of
confidentiality policies that control the release of subproofs generated by e. This
interplay between integrity policies and confidentiality policies implies that the
complete details of a proof tree may not be available to entities in the system.
In particular, the querying entity will not learn any details of the proof tree
beyond those specified by his or her integrity policies. Further, intermediate
nodes in a proof tree may not learn whether the proof construction protocol was
successful, as the results of subqueries issued by these nodes may be hidden
from them by the query target’s confidentiality policies (see Section 2.3 for an
example of this behavior). These assumptions imply that the view consistency
solutions developed by Lee and Winslett [2006, 2008] cannot be used in this
environment.

3.2 Problem Definition

As observed in Section 1, the use of inconsistent views of a system during
policy evaluation can lead to situations in which a policy evaluator believes
that certain facts held true simultaneously when, in fact, they did not. We now
more precisely define this problem.

Definition 1 (Validity). An entity e can determine that some proof fact f
is valid at time t if either (i) f is in e’s local knowledge base at time t, or
(ii) f is considered valid at time t by a remote entity who is trusted to provide
information regarding f.

Note that asserting the validity of some fact f at a particular time t by
invoking case (ii) of the aforementioned definition is not a straightforward
task. Consider the case where some entity e issues a query for fact f to another
entity e′ at time tiss. Due to delays in the network and processing delays at e
and e′, it is likely that e′ will not receive the query until some time t′ > tiss.
Similarly, e is unlikely to receive e′’s response to his query until some time
trcv > t′. Therefore, e cannot conclude that f was valid at either tiss or trcv; he
can only infer that f was valid at some time t where tiss ≤ t ≤ trcv; we will
discuss methods for fine-tuning these types of inferences later in the article.
As facts are collected and validated, an entity builds a view of the system that
will be used to construct a proof of authorization.

Definition 2 (Fuzzy Validity Interval). The interval [ts, te] is a fuzzy validity
interval for some fact f if f can be shown to be valid at some (possibly unknown)
time t such that ts ≤ t ≤ te.
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Definition 3 (Concrete Validity Interval). The interval [ts, te] is a concrete
validity interval for some fact f if f can be shown to be valid at all times t such
that ts ≤ t ≤ te.

Definition 4 (Fact State). Let the set t contain all possible timestamps, let
⊥ denote the null value, and let � be a predefined length parameter. The fact
state for a fact f as observed by some entity is then denoted by the 5-tuple
s = 〈id, e, tα, tω, fuzzy〉 ∈ {0, 1}� × E × T ∪ {⊥} × T ∪ {⊥} × B. The value id is
an �-bit identifier assigned to the fact f (which may simply be an encoding of
that fact), e identifies the entity from which f was obtained, tα and tω are local
timestamps, and fuzzy is a Boolean value indicating whether [tα, tω] specifies a
fuzzy (fuzzy = true) or concrete (fuzzy = false) validity interval. The set of all
possible fact state tuples is denoted by S.

Entities in the system create fact state tuples as the validity of certain
facts is revealed during the execution of the distributed proof protocol. In the
remainder of this article, we will use dot notation to access the fields of fact
state tuples. For instance s.id represents the identifier of the fact whose state
is stored in s. Note that if given a fact state tuple s for a fact f has either of its
s.tα or s.tω fields set to ⊥, then no conclusions can be drawn about the validity
status of f .

Definition 5 (View). A view is any collection of fact state tuples that has no
more than one tuple for any 〈id, e〉 pair.

We have now defined an entity e’s view of the system as some collection
of local observations that e has made regarding the validity of certain facts.
Given that any such view contains only local observations, it is unlikely to
capture a precise snapshot of the system state. As such, the consistency level
of these views is of the utmost importance. Although such a view may contain
data associated with any number of facts, unless noted otherwise, we assume
without loss of generality that an entity e will only wish to enforce consistency
constraints on views comprised of facts associated with a single distributed
proof.

Definition 6 (View Consistency). A view V is said to be φ-consistent if and
only if V satisfies some predicate φ that places temporal constraints on the
observed validity intervals of the facts whose state data are stored in V.

3.3 Levels of Consistency

We now describe four increasingly stringent levels of view consistency relevant
to distributed proof construction protocols for use in the system model de-
scribed in Section 3.1. We then discuss a fourth view consistency level designed
specifically for use in pervasive computing environments.

3.3.1 Incremental Consistency. The most basic definition of view consis-
tency that one can imagine is what we will refer to as incremental consis-
tency. Intuitively, an incrementally consistent view is a view in which each fact
was valid at some point during the construction of the related proof tree. To

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 25, Publication date: July 2010.



25:10 • A. J. Lee et al.

formally define the notion of incremental consistency, we first define the pred-
icates checked : S → B, fuzzy : S → B, and concrete : S → B.

checked(s) ≡ (s.tα �= ⊥) ∧ (s.tω �= ⊥) ∧ (s.tα ≤ s.tω) (1)

fuzzy(s) ≡ checked(s) ∧ s.fuzzy (2)

concrete(s) ≡ checked(s) ∧ ¬s.fuzzy (3)

The predicate checked(s) ensures that the fact state tuple s contains a fully
defined validity interval. The fuzzy(s) predicate is true if and only if s encodes
a fully defined fuzzy validity interval; concrete(s) is true if and only if s en-
codes a fully defined concrete validity interval. Given these predicates, we can
now formally define the notion of incremental consistency for distributed proof
systems via the predicate φinc : 2S × T × T → B as follows.

φinc(V, ts, te) ≡ ∀s ∈ V : checked(s) (4)

∧ (fuzzy(s) → ((ts ≤ s.tα) ∧ (s.tω ≤ te)))

∧ (concrete(s) → ((s.tα ≤ ts ≤ s.tω) ∨ (s.tα ≤ te ≤ s.tω))

The predicate φinc—which is a reformulation of the predicate φinc defined by
Lee and Winslett [2006, 2008]—is satisfied by a view V during some interval
[ts, te] if and only if each fact state tuple in the view contains a fully specified
validity interval, each fuzzy validity interval is a subinterval of [ts, te], and
each concrete validity interval overlaps [ts, te] at some point. This gives us the
following definition for an incrementally consistent proof construction and an
associated theorem.

Definition 7 (Incremental Consistency). A view V generated between the
time that a given query was issued, tiss, and the time that the completed proof
tree was received by the issuer, trcv, is incrementally consistent if and only if
φinc(V, tiss, trcv) is true.

THEOREM 1. The Minami-Kotz distributed proof construction protocol al-
ways uses incrementally consistent views when evaluating authorization
policies.

PROOF. Assume that the distributed proof construction algorithm succeeds
in constructing a proof tree using a view that is not incrementally consistent.
This implies that there exists some fact f that was not true at any point dur-
ing execution of the proof construction protocol. This means that the validity
status for f (which must be true for the proof to succeed) was contributed to
the proof tree before the proof construction process was started or, equiva-
lently, was a replayed validity status from an earlier execution of the protocol.
However, each validity status returned by a fact provider is causally-linked to
the query executed by a querier-provided nonce (see Minami and Kotz [2005]),
which prevents both the incorporation of old validity information and replay
attacks. This implies that f was valid during the protocol execution, which is
a contradiction.

The fact that existing distributed proof construction protocols use incremen-
tally consistent views when making authorization decisions is exactly what
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leads to the types of safety violations discussed in Section 1. This is because
incremental consistency provides no guarantees regarding the overlap of the
observed validity periods for facts whose state is stored in V in the event that
any fact used during the proof construction is not a stable assertion. The other
consistency levels defined in this section will address this problem.

3.3.2 Query Consistency. The next more stringent level of consistency that
we define is query consistency. Informally, this consistency level guarantees
that all facts used to construct a distributed proof were valid simultaneously
at the time that the query triggering that proof construction was issued. We
formally define query consistency in terms of the predicate φquery : 2S × T → B,
as follows.

φquery(V, tiss) ≡ ∀s ∈ V : concrete(s) ∧ (s.tα ≤ tiss ≤ s.tω) (5)

Definition 8 (Query Consistency). A view V is query consistent with respect
to a query issued at time tiss if and only if φquery(V, tiss) is true.

If an authorization policy is satisfied using a query-consistent view, the
semantics of policy satisfaction in the distributed proof construction setting
remain the same as if the proof had been constructed using a centralized proof
framework supporting transactional evaluation (e.g., a Prolog theorem prover).
In the event that any facts necessary to construct a given proof of authorization
are unstable (i.e., their value can change once set), a view consistency level that
is at least as strong as query consistency should be enforced to ensure that the
satisfaction of a given authorization policy carries the same meaning as policy
writers and analysts would expect it to have.

Note that although query consistency provides a formal guarantee that each
fact in a query was simultaneously true, this can still be insufficient in some
cases. Consider, for example, the scenario presented in Section 1 in which
Alice attempts to display medical records using the projector in her office. At
the beginning of this protocol execution, each fact protecting Alice’s access to
the projector was simultaneously true, which means that her view of the proof
system was query consistent. However, permitting this access is problematic,
as discussed in Section 1, since the “spirit” of the policy is violated by Bob’s
presence in the room at the end of the protocol. This motivates our next, more
stringent, level of view consistency.

3.3.3 Interval Consistency. The most stringent consistency level that we
consider in this article is interval consistency. We say that some view V is
interval consistent during some interval [ts, te] if each fact state tuple in V
encodes a concrete validity interval that includes at least [ts, te]. More formally,
we define interval consistency using the predicate φinterval : 2S × T × T → B, as
follows.

φinterval(V, ts, te) ≡ ∀s ∈ V : concrete(s) ∧ (s.tα ≤ ts ≤ te ≤ s.tω) (6)

Definition 9 (Interval Consistency). A view V is interval consistent for a
time interval [ts, te] if and only if φinterval(V, ts, te) is true.
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The preceding definition of interval consistency is a reformulation definition
of interval consistency presented by Lee and Winslett [2006, 2008], altered to fit
within the formalization of the consistency problem presented in Section 3.2. In
distributed proving, the notion of interval consistency is useful for two primary
reasons. First and foremost, interval consistency is important in the event that
a resource provider wishes to monitor the conditions that lead to the permission
of a given resource access. For instance, the hospital smart room discussed in
Section 1 may wish to first check that Alice is the only person located in her
locked office before allowing her to project patient records onto the wall and
then continue to monitor these conditions. If her door subsequently became
unlocked, for instance, access to the projector could be revoked. By ensuring
that all facts protecting Alice’s access to the projector are true throughout the
duration of the protocol, we are guaranteed that the policy is satisfied at the
moment that access is granted.

At the implementation level, interval consistency can also be useful in the
event that a proof tree is constructed that permits access to a given resource,
but that view cannot be shown to be query consistent. The fact that a proof
could be formed at all implies that it is possible that the facts that make up
the proof were valid simultaneously, even though this could not be guaranteed
from the view used to construct the proof. If it is faster to recheck a proof than
it would be to generate the proof tree again, then this recheck could lead to an
interval-consistent view during the interval [trcv, trecheck], where trcv is the time
that the original proof was returned to the resource provider and trecheck is the
time at which the resource provider begins revalidation of the proof tree. We
will explore this case further in Section 4.3.

3.3.4 Sliding Windows of Consistency. Although powerful, the notion of
interval consistency defined above may be too strong in some circumstances. For
example, in pervasive computing environments with rapid contextual changes,
fact validity statuses may fluctuate often around some acceptable baseline;
this could lead to situations in which views were repeatedly determined to be
inconsistent and cause numerous service interruptions (e.g., consider a policy
that is in some way predicated on the number of occupants in a busy hallway).
Rather than falling back on the notion of query consistency, which provides
no continuing validity checks, entities may wish to enforce a level of view
consistency that provides guarantees somewhere between what is afforded by
the query and interval consistency levels.

As one interesting example, a service provider might wish to enforce the
constraint that at each time t, all facts used to justify resource access must
have been simultaneously valid at some time t′ such that t − � ≤ t′ ≤ t,
where � is the length of a sliding window defined by the service provider.
More formally, we define this notion of sliding windows of consistency using
the predicate φsliding : 2S × T × T × N → B as follows:

φsliding(V, ts, te,�) ≡ ∀t ∈ [ts, te] ∃t′ ∈ [t − �, t] such that (7)

∀s ∈ Vt′ : concrete(s) ∧ (s.tα ≤ t′ ≤ s.tω)
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Definition 10 (Sliding Window Consistency). A view V is sliding window
consistent for a time interval [ts, te] and a window size � if and only if the
predicate φsliding(V, ts, te,�) is true.

Note that the notion of sliding window consistency is only useful in situations
where the validity of the facts being monitored in a particular view change over
time. As a result, sliding window consistency is not a property of a single view
but is rather a property of a series of views representing the observed fluctua-
tions of a set of facts. The definition of Equation 7 reflects this by introducing
the notion of a subscripted view. The view Vt′ used in this definition refers to
the instance of the view V containing information about fact validity statuses
at the time t′. In Section 4.4, we will see that the algorithm used to enforce
this notion of view consistency requires periodic evaluation of intermediate
conditions, which is a reflection of this notion of evolving views.

4. ALGORITHM DETAILS

In this section, we discuss modifications to the Minami-Kotz distributed proof
construction algorithm that ensure the use of consistent system views during
policy evaluation. As this algorithm trivially ensures that an incrementally
consistent view is used (by Theorem 1), we will focus our discussion on creat-
ing query-, interval-, and sliding window–consistent views. We then comment
on how these algorithms could be adapted for use in other, less restrictive,
distributed proof systems.

4.1 Preliminaries

In this section, we will be concerned with both the correctness and security
properties of our proposed proof construction algorithm modifications. In addi-
tion to proving the soundness of our consistency enforcement algorithms, we
will also address their proximity to ideal completeness. A φ-consistency en-
forcement algorithm is said to be ideally complete if and only if it is capable
of constructing φ-consistent views for all protocol executions in which an ideal
algorithm run by an omniscient entity could construct a φ-consistent view [Lee
and Winslett 2006]. Further, we will ensure that each proposed modification
is a policy-safe modification to the proof construction protocol. That is, we will
show that our modifications do not violate the integrity or confidentiality poli-
cies specified by each entity.

4.2 Query Consistency

We now show that with relatively minor changes, the Minami-Kotz distributed
proof construction protocol can be modified to use query-consistent views when
making authorization decisions. As presented by Minami and Kotz [2005], this
proof construction algorithm assumes that each knowledge base KB is defined
as a subset of all possible facts, F . Rather, we will define a knowledge base KB
as a subset of F×T in which each fact is associated with the local time at which
it was inserted into KB. This allows each node to track the duration of a given
fact’s validity locally.
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Algorithm 1. A query consistency enforcement algorithm
1: // Receive a fact response tuple relevant to a query issued at time tiss

2: // from some entity e. Only invoked on true facts.
3: Function RCVFACT( f ∈ F, d ∈ N, e ∈ E, tiss ∈ T, V ∈ 2S )
4: trcv ← NOW
5: if trcv − tiss ≤ d(1 − δ) then
6: V.insert(ENCODE( f ), e, tiss, tiss, false)
7: else
8: V.insert(ENCODE( f ), e, tiss, NOW, true)
9:

10: // Check the query consistency condition on a view V relative
11: // to a query issued at time tiss.
12: Function CHECKQUERY(V ∈ 2S , tiss ∈ T)
13: for all s ∈ V do
14: if s.fuzzy ∨ (tiss < s.tα) ∨ (s.tω < tiss) then
15: return false
16: return true

To leverage this new knowledge-base format, the format of query responses
must also be altered. Rather than an entity e responding to some query ? f
with a Boolean response b ∈ B indicating whether f is considered valid by e (as
in Section 2), they will instead respond with a fact response tuple of the form
〈b, d〉 ∈ B × N. The b component of this tuple indicates whether e considers f to
be valid, as before, and the d component of this tuple represents the length of
time that e acknowledges that f has been true, or some duration less than this
if the exact duration of validity is considered sensitive. In the event that f is a
base atom, d is (at most) the difference between the current time and the time
associated with f in e’s knowledge base; if f is the head of a Horn clause f :-
f1, . . . , fn, then d is set to be (at most) the minimum such duration associated
with any of f1, . . . , fn. In the case that f is false, d is set to 0. Note that neither
f nor any f1, . . . , fn need to be locally stored facts.

Given the previously mentioned modifications to the formats of enti-
ties’ knowledge bases and query responses, we now present the details of
Algorithm 1, which facilitates the creation of query-consistent views. In Al-
gorithm 1 and all other algorithms presented in this article, we make the fol-
lowing assumptions regarding the local data structures accessible by entities
in the system.

—The current local time is available via the local variable NOW.
—The absolute value of the maximum clock drift rate between any two entities

in the system is no more than some constant δ. This does not imply that
clocks are in any way synchronized, only that for each n time units that pass
one entity, no less than n(1 − δ) time units and no more than n(1 + δ) time
units pass at any other entity.

—Fact state tuples can be inserted into a view data structure via the function
insert : {0, 1}�×E×T×T×B → ⊥. Note, for instance, that V.insert(id, e, t, t′, b)
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will replace any existing fact state tuples in V that have the identifier id and
were received from entity e (see Definition 5).

—The function ENCODE : F → {0, 1}� returns an encoding of some fact f ∈ F
suitable for insertion into a view (see Definition 4).

Algorithm 1 consists of two functions that are to be used by the querying
entity. Whenever the querier issues a new query, she records the query issue
time tiss and chooses a view V to which the results of her query are considered
relevant; V need not be a new empty view. In the event that the response to her
query is true, Alice invokes the RCVFACT function. If the fact provider attests
that the fact whose status was queried was valid for some duration d that is
longer than the time between when the query was issued and when its response
was received, this function inserts a fact state tuple into V asserting that the
corresponding fact was valid at time tiss. Otherwise, a fact state tuple encoding
a fuzzy interval is inserted into V. The function CHECKQUERY checks to see that
φquery is true, as defined by Equation 5.

THEOREM 2. If the function CHECKQUERY(V, tiss) returns true, then V is query
consistent relative to the query issue time tiss, provided that V was constructed
using only the RCVFACT function.

PROOF. The CHECKQUERY function clearly enforces the constraint that all
fact state records encode concrete validity intervals that include the time tiss.
Thus, CHECKQUERY(V, tiss) ↔ φquery(V, tiss) and V is query consistent with respect
to the time tiss by Definition 8, provided that all concrete validity intervals
established by RCVFACT are correct. Lines 5 through 8 of Algorithm 1 ensure
that RCVFACT inserts a concrete validity interval into V if and only if the validity
duration, d, reported by the fact provider is longer than the query round-trip
time, even when adjusted to assume the largest possible clock drift between
entities. Since the query and its associated response can be causally linked
by nonces used in the underlying proof construction protocol (see Minami and
Kotz [2005]), we can infer that the fact provider sent its response to the query
at some time t ≥ tiss. This implies that the fact associated with the state tuple
being inserted into V was valid at tiss because t − d(1 − δ) ≤ tiss ≤ t for all
possible values of t such that tiss ≤ t ≤ trcv since trcv − tiss ≤ d(1 − δ).

THEOREM 3. Algorithm 1 is a policy-safe modification to the Minami-Kotz
distributed proof construction protocol.

PROOF. Minami and Kotz [2005] prove that their distributed proof con-
struction algorithm constructs a proof of authorization only if the integrity
policies of every participating entity are satisfied. Since Algorithm 1 does not
alter the mechanism through with the proof construction algorithm constructs
proof trees, it does not affect the enforcement of any entity’s integrity policies.
Furthermore, since the query response tuples 〈b, d〉 ∈ B × N returned by our
modified protocol can be encrypted in the same manner as query responses in
the original protocol, the enforcement of confidentiality policies is not affected.
Therefore, Algorithm 1 makes only policy-safe modifications to the underlying
distributed proof construction protocol.
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Although Algorithm 1 is sound (by Theorem 2), it is not ideally complete. It
could be the case that a certain fact was valid at the time that a query was
issued, even if the validity duration reported by the fact provider is less than the
query round-trip time; this is an inevitable consequence of the use of casual
orderings rather than synchronized clocks. Although not a violation of ideal
completeness, this algorithm can also fail in the event that the validity of some
fact is not monitored until the first query regarding this fact is issued. Both of
these cases make it desirable to have an efficient means of revalidating a given
view, as it is likely to be found consistent if rechecked. This leads directly to
the stronger notion of interval consistency.

4.3 Interval Consistency

Establishing an interval-consistent view typically involves observing that the
validity statuses of the facts comprising the view do not change or fluctuate
during the course of several observations of portions of the system [Lee and
Winslett 2006]. In the distributed proving setting, one cannot simply construct
a given proof twice to establish an interval of validity, as there would be no
guarantee that the values of facts did not fluctuate between proofs or even that
the same proof tree was generated for each query.2 The requery method can
succeed, however, if we leverage caches at intermediate nodes to ensure that the
same proof tree is constructed at each invocation and that fluctuations can be
detected (via cache misses caused by proactive revocations). The intermediate
node caches proposed by Minami and Kotz [2006] could be modified to suit this
purpose.

Although this modified requery strategy for ensuring interval-consistent
views is appealing due to its simplicity, it is in fact a worst-case strategy for
a number of reasons. First, this strategy requires excessive storage of data at
intermediate nodes, which is undesirable if nodes wish to remain autonomous.
Second, the requery strategy requires that the entire proof tree be traversed
twice, even though only the values managed by the leaves of the proof tree
are of any significance to whether the proof succeeds; this results in high
communication overheads. Lastly, due to reliance on intermediate node caches,
a failure of any node contributing to the proof tree can cause the revalidation
process to fail.

Assuming that the rules of inference dictating the structure of a proof tree
are not revoked over time, we can design a more optimal strategy for ensur-
ing interval-consistent views. Specifically, we can alter the proof construction
protocol in such a way that the querying entity would learn not only whether
a proof succeeded, but also a set of association tuples, each of which binds the
identity of some leaf entity e in the proof tree to a fact identifier that can be used
to recheck the status of the fact provided by e. This strategy eliminates the need
for intermediate node caches, incurs the lowest possible overall communication
overheads during a proof recheck, and fails only if a data-providing entity fails.

2Recall that the portions of the proof tree outside of the querier’s integrity policies are unknown to
the querier; these portions of the proof tree may differ between invocations and go undetected.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 25, Publication date: July 2010.



On the Consistency of Distributed Proofs with Hidden Subtrees • 25:17

Even though this leaf exposure strategy is optimal in many respects, it can
potentially violate the confidentiality policies of the leaf entities.

In an attempt to balance the efficiency of the leaf exposure strategy with the
privacy preservation of the requery strategy, we propose the leaf indirection
strategy for constructing interval-consistent views. As was the case with the
query enforcement strategy presented in Section 4.2, we require slight modifi-
cations to formats of the entities’ knowledge bases and query responses.3 We
will define a knowledge base KB as a subset of F × {0, 1}� in which facts are
associated with some locally unique identifier. It is important that each time a
fact is inserted into a knowledge base, it is associated with a previously unused
local identifier in {0, 1}�. Furthermore, an entity e will respond to a query of
the form ? f with a response tuple of the form 〈b, (〈e′, id〉)Kq〉 ∈ B × {0, 1}n. The
b component of this tuple indicates whether e considers f to be valid, as in
the unmodified proof system. The e′ and id components of this tuple form an
association tuple from the set E ×{0, 1}�, as described earlier, though this asso-
ciation tuple is encrypted with the public key of the original querying entity, q.
As in the leaf exposure strategy, e may choose to bind herself to the proof tree,
in which case e′ = e and id is set to the identifier currently associated with f
in e’s knowledge base. However, e can instead choose a trusted indirect entity,
ie, at random; obtain a nonce n from ie; and bind ie to the proof tree by setting
e′ = ie and id = n. Each indirect entity maintains a small remote cache that
associates locally chosen nonces with 〈entity, fact identifier〉 pairs to facilitate
the proof recheck process.

The leaf-indirection strategy for constructing interval-consistent views is
implemented by Algorithm 2. Prior to explaining this algorithm in detail, we
first assume that entities have access to the following local data structures and
methods, in addition to those required in Section 4.2.

—Each entity maintains a set of locally trusted indirect entities, Indirect.
—The symbol ←r denotes random assignment from some set. For example,

e ←r Indirect chooses a random member from the set of trusted indirect
entities.

—An entity’s node identifier can be accessed via the local variable ME.
—The function GETFRESHNONCE: ⊥ → {0, 1}� chooses a previously unused iden-

tifier to be associated with some fact or fact provider.
—The local knowledge base is accessible via the data structure KB. The func-

tion KB.contains : {0, 1}� → B checks whether the fact associated with a
given identifier is currently in the local knowledge base.

—An entity’s remote cache is accessible via the RemoteCache data structure.
This data structure has member functions insert : {0, 1}� × E × {0, 1}� → ⊥,
contains : {0, 1}� → B, lookup : {0, 1}� → E × {0, 1}�, and delete : {0, 1}� → ⊥.

3Although the modifications required for the leaf indirection strategy are presented independently
of the modifications required for query consistency, this need not be the case. In practice, both sets
of modifications can be used together to allow for the creation of either query- or interval-consistent
views.
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Algorithm 2 works as follows. An entity contributing a base fact to some proof
tree invokes the GENERATEASSOCIATION function to generate the association tuple
that will be propagated back up the proof tree to the initial querier. If the entity
q for whom this association tuple is being prepared is authorized by the local
entity’s confidentiality policies to learn the value of the fact associated with
id, this function binds the local entity to the provided fact identifier. If q is
not authorized to learn of the local entity’s involvement in the proof process,
a randomly chosen trusted indirect entity is bound to the proof tree via a
call to the INSERTREMOTE(e, id) function. This function triggers the execution
of the INSERTASSOCIATION function at the entity e; INSERTASSOCIATION chooses
a fresh nonce and binds this to the pair 〈e′, id〉, where e′ is the entity who
called INSERTREMOTE(e, id). The nonce is then returned to the entity e′. The
initial querier thus receives both the proof tree constructed by the algorithm
discussed in Section 2 and a list of association tuples binding either leaf entities
or indirect leaf entities to the proof tree. Each of these association tuples is
used to construct fact state tuples in some view V by using the RCVASSOC

function.
Once the view V contains all of the necessary fact state tuples, the initial

querier can then attempt to establish an interval of consistency through one or
more calls to the RECHECKVIEW(V) function. For each fact state tuple s ∈ V, this
function uses the ASKREMOTE function to query the remote entity s.e to see if the
fact associated with s.id is still valid. If the fact associated with s is still valid,
then the validity interval in s is updated. Fuzzy validity intervals are turned
into concrete validity intervals ranging from the end of the fuzzy interval until
the time that the recheck was invoked; concrete validity intervals are just ex-
tended. The ASKREMOTE(id, e) function works by invoking the RECHECKFACT(id)
function at the entity e. This function returns true if the fact associated with
id is still in e’s local knowledge base or in the knowledge base of the entity
associated with the nonce id in e’s remote cache, and it returns false otherwise.
The function CHECKINTERVAL(V) checks to see that φinterval(V) holds, as defined
by Equation 6.

THEOREM 4. If the function CHECKINTERVAL(V, ts, te) returns true, then V is
interval consistent on the interval [ts, te] provided that V was constructed using
only calls to the RCVASSOC and RECHECKVIEW functions.

PROOF. The CHECKINTERVAL(V, ts, te) function enforces the constraint that all
fact state tuples in V encode concrete validity intervals that include at least the
interval [ts, te]. Therefore, CHECKINTERVAL(V, ts, te) ↔ φinterval(V, ts, te), which im-
plies that V is interval consistent on the interval [ts, te] by Definition 9, provided
that all concrete validity intervals established by RCVASSOC and RECHECKVIEW

are correct. RCVASSOC(〈e, id〉, tiss) inserts a fuzzy validity interval bounded by
the query issue time, tiss, and the association tuple receipt time for the fact f
described by identifier id. This is a legitimate action, as nonces used by the
underlying proof construction protocol (see Minami and Kotz [2005]) allow us
to causally link the query and its response and, therefore, establish that the
fact provider asserted f ’s validity at some time t ≥ tiss. We must now show that
RECHECKVIEW updates these fuzzy intervals correctly.
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Algorithm 2. An interval consistency-enforcement algorithm
1: // Generate an association tuple for the fact associated with identifier id
2: // to be sent to the initial querying entity q
3: Function GENERATEASSOCIATION(id ∈ {0, 1}�, q ∈ E)
4: if q not authorized to learn fact associated with id then
5: e ←r Indirect
6: id′ ← INSERTREMOTE(e, id)
7: return 〈e, id′〉
8: else
9: return 〈ME, id〉

10:
11: // Accepts an entry to the RemoteCache table after
12: // entity e calls INSERTREMOTE

13: Function INSERTASSOCIATION(e ∈ E, id ∈ {0, 1}�)
14: id′ ← GETFRESHNONCE()
15: RemoteCache.insert(id′, e, id)
16: return id′

17:
18: // Insert a fact state tuple associated with the association record 〈e, id〉
19: // bound to a query issued at time tiss into the view V.
20: Function RCVASSOC(〈e, id〉 ∈ E × {0, 1}�, tiss ∈ T, V ∈ 2S )
21: V.insert(id, e, tiss, NOW, true)
22:
23: // Recheck the fact tuples making up a view V
24: Function RECHECKVIEW(V ∈ 2S )
25: for all s ∈ V do
26: t ← NOW
27: if ASKREMOTE(s.id, s.e) then
28: if s.fuzzy then
29: V.insert(s.id, s.e, s.tω, t, false)
30: else
31: V.insert(s.id, s.e, s.tα, t, false)
32:
33: // Revalidate the fact identified by id
34: Function RECHECKFACT(id ∈ {0, 1}�)
35: if KB.contains(id) then
36: return true
37: if RemoteCache.contains(id) then
38: 〈e, id′〉 ← RemoteCache.lookup(id)
39: b ← ASKREMOTE(e, id′)
40: if ¬b then
41: RemoteCache.delete(id)
42: return b
43: else
44: return false
45:
46: // Check the interval consistency condition on a view V relative
47: // to the time interval [ts, te]
48: Function CHECKINTERVAL(V ∈ 2S , ts ∈ T, te ∈ T)
49: for all s ∈ V do
50: if s.fuzzy ∨ (ts < s.tα) ∨ (s.tω < te) then
51: return false
52: return true
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Assuming that the ASKREMOTE function correctly determines whether a given
fact is still true at the providing entity, RECHECKVIEW extends the validity inter-
val for each fact state tuple whose corresponding fact is still valid. Assume that
the recheck process for a fact state tuple s corresponding to some fact f starts
when NOW = tr and succeeds. If s encodes the fuzzy validity interval [s.tα, s.tω],
s is updated to encode the concrete validity interval [s.tω, tr], since f was true
at some time t ≤ s.tω and was not yet revoked at some later time t′ ≥ tr. If s
encodes a concrete validity interval [s.tα, s.tω], it is extended to encode the con-
crete validity interval [s.tα, tr]. We now show that RECHECKFACT(id)—which is
invoked at entity e by the call ASKREMOTE(id, e)—correctly assesses the validity
of the fact associated with the identifier id.

We must consider both the case in which the fact f associated with the
identifier id was originally stored in e’s local knowledge base and the case in
which id was an entry in e’s remote cache. In the case where f was stored in e’s
local knowledge base, line 35 of Algorithm 2 returns true if e’s knowledge base
still contains the fact f associated with id; we know that f has not yet been
revoked because the GETFRESHNONCE function ensures that fact identifiers are
not reused. If f has since been removed from e’s knowledge base, then the call
to KB.contains(id) will fail. The check on line 37 will then fail because the state
tuple associated with id was originally stored locally and thus would not be
associated by GETFRESHNONCE with an entry in e’s remote cache. This failure
would then cause RECHECKFACT to return false, which implies that RECHECKFACT

performs correctly in the case in which the fact f associated with identifier id
was originally stored in e’s local knowledge base.

We now consider the case in which id was originally associated with an entry
in e’s remote cache. Line 38 first determines the tuple 〈e′, id′〉 associated with
the identifier id in e’s remote cache. If this look-up fails, we know that the
fact that was indirectly associated with the identifier id has been revoked, as
entries in e’s remote cache are only removed after failed look-ups (by line 41).
By reasoning similar to that used earlier, the call to ASKREMOTE on line 39 will
cause RECHECKFACT to return true in the event that the fact f ′ associated with
id′ in e′’s knowledge base has not yet been revoked. Again, we know that this
is not a false positive, as GETFRESHNONCE ensures that fact identifiers are used
at most once. If f ′ has been removed from e′’s knowledge base but not from e’s
remote cache, this call to ASKREMOTE will return false. This will cause the entry
associated with id to be removed from e’s remote cache; RECHECKFACT will then
return false, as expected.

The fact that RECHECKFACT behaves as expected implies that ASKREMOTE

correctly assesses the continuing validity of remotely store facts. This, in
turn, implies that RECHECKVIEW correctly updates the validity intervals en-
coded in the fact state tuples of a given view initially constructed by one
or more calls to the RCVASSOC function. Since views can be correctly con-
structed by calls to the RCVASSOC and RECHECKVIEW functions and we have
shown that CHECKINTERVAL(V, ts, te) ↔ φinterval(V, ts, te), we can conclude that
CHECKINTERVAL(V, ts, te) returns true if and only if V is interval consistent on
the interval [ts, te].
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Note that although Algorithm 2 is shown to be sound by Theorem 4, it is not
ideally complete. That is, an omniscient entity may have been able to observe
an interval-consistent view even if Algorithm 2 fails. This can occur because
the set of rechecks initiated after the time te takes a nonzero amount of time to
complete. As with the completeness limitations discussed in Section 4.2, this is
an artifact of relying on causal orderings to establish validity intervals, rather
than perfectly synchronized clocks. We now show that Algorithm 2 is a policy-
safe modification to the underlying distributed proof construction protocol.

THEOREM 5. Algorithm 2 is a policy-safe modification to the Minami-Kotz
distributed proof construction protocol.

PROOF. As was the case with Algorithm 1, Algorithm 2 does not affect the
construction of distributed proof trees. Therefore, the proof given by Minami
and Kotz [2005] stating that proof trees are constructed only if the integrity
policies specified by each participating entity are respected still holds. We must
now show that the confidentiality policies specified by each entity are still
respected. To this end, we must show that no unauthorized entity along the
path from the querier q to some fact provider e can learn both the fact f provided
by e and f ’s validity as reported by e. To address the most general case, we
will assume that learning e’s identity is sufficient for an unauthorized entity
to infer f . We then show that (i) each entity participating in the construction
of the proof tree that is not entitled to know f cannot learn e’s identity, and
(ii) entities that do know f but should not learn f ’s validity cannot infer it.

We first treat case (i) and show that each unauthorized entity u in the proof
tree that should not learn f does not learn e’s identity. There are two sub-
cases: u = q and u �= q. Consider the case where u is an intermediate entity
in the proof tree, that is, u �= q. In this case, u cannot learn e’s identity, as the
association tuple that might possibly bind e to the proof tree is encrypted with
q’s public key, Kq. In the case that u = q, we must show that u cannot learn e’s
identity. In this case, q receives an association tuple binding an indirect entity
ie to the fact provided by e. Since ie is trusted by e not to reveal e’s identity, q
cannot learn the identity of e and thus cannot infer the hidden fact f provided
by e.

Note that case (ii) is handled by the encryption of sensitive query responses
as described in Section 2.3. Since the incorporation of association tuples into
query responses does not affect this encryption process, the proof construction
algorithm will correctly enforce the confidentiality of responses as proven by
Minami and Kotz [2005]. As we have shown that each entity that should not
learn the fact f provided by e cannot learn f and that entities that should not
learn f ’s validity cannot learn it, we can conclude that e’s confidentiality poli-
cies are correctly enforced. Since both e’s confidentiality policies and integrity
policies are correctly enforced, we can conclude that Algorithm 2 is a policy-safe
modification to the underlying proof system.

Although Algorithm 2 is a policy-safe modification to the Minami-Kotz dis-
tributed proof construction framework, it does nonetheless reveal additional
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Fig. 5. A diagram illustrating several possible proof tree structures. Inference nodes are repre-
sented by squares and fact leaves are represented by circles. The dashed lines indicate the expected
leaves of the proof tree as perceived by the querier.

information to the initial querying entity q. Specifically, in addition to knowing
the portion of the initial proof tree specified by its integrity policies, q learns
a list of association tuples declaring certain entities to be (possibly indirect)
contributors of atomic facts to the proof tree. We now prove that this list of
association tuples gives q only minimal information regarding the structure of
the generated proof tree beyond what is implied by its integrity policies.

THEOREM 6. Given the set of association tuples A = {〈e1, n1〉, . . . , 〈ei, ni〉}
associated with a given proof tree, the initial querier q learns only the number
of entities contributing facts to the proof tree and, in some cases, whether the
proof tree extends beyond the proof tree implied by their integrity policies.

PROOF. Assume without loss of generality that each entity involved in the
construction of a distributed proof makes at most one inference step. Let the
set E contain the leaf entities implied by q’s integrity policies, henceforth called
the set of expected leaves of the proof tree. To prove this claim, we must explore
two cases: |E| = |A| and |E| < |A|. If |E| = |A|, we know that each expected
leaf node e ∈ E is either a fact provider or the initiator of a chain of inference
forming a linear subproof whose leaf provides a fact to the proof generated by
q’s query. If e is mentioned explicitly in an association tuple a ∈ A, then q
cannot conclude whether e contributed directly to the proof tree or was chosen
as an indirect entity for the actual leaf, e′, of the linear subproof initiated by e.
These two indistinguishable subcases are shown in Figures 5(a) and 5(b). Note
that in Figure 5, each inference node Ik is associated with a unique entity ek by
our prior assumption. If e is not explicitly mentioned in any association tuple
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in A, then q cannot differentiate between the case in which e contributed a fact
to the proof tree via an indirect entity and the case in which e initiated a chain
of inference resulting in a linear subproof.

If |E| < |A|, then q knows that the proof tree certainly extends beyond
the proof tree implied by her integrity policies and that at least one e ∈ E
initiated a subproof contributing multiple facts to the proof. In the event that
|E| > 1, q cannot infer which entity or entities in E initiated subproofs con-
tributing multiple facts to the proof, as the set of association tuples A encodes
no structural information. If |E| = 1, then q clearly knows that the only e ∈ E
initiated a subproof contributing multiple facts to the proof tree. However, q
cannot differentiate between linear and branching chains of inference, again,
as no structural information is encoded in the set A. This case is illustrated
in Figures 5(c) and 5(d). This shows that q learns no information beyond the
number of facts used in the proof tree and whether, in some cases, the proof
tree extends beyond its expected leaves.

4.4 Sliding Windows of Consistency

Recall from Section 3.3.4 that the definition of sliding window consistency
requires the use of a sequence of views recording observational information
regarding the validity of the facts used during the construction of a given
distributed proof. As a result, the algorithm used to enforce this consistency
condition cannot follow the “construct and validate” strategies used to enforce
the notions of interval and query consistency. Rather, algorithms for enforcing
sliding window consistency constraints must repeatedly sample the state of the
proof tree, evaluating intermediate consistency conditions all the while.

A naı̈ve approach to enforcing this consistency condition involves repeated
use of Algorithm 1. If a query evaluator uses this algorithm to establish a query-
consistent view every τ time units for some τ ≤ �, it is easy to show that the
φsliding predicate (Equation 7) is satisfied. However, as we will see in Section 5,
the overhead of constructing an initial proof tree (e.g., as in Algorithm 1) is
far greater than the cost of rechecking an existing proof tree. This implies
that this naı̈ve approach to enforcing the sliding window consistency condition
is computationally more expensive than is strictly necessary. A more cost-
effective alternative is to create an algorithm that leverages both the simplicity
of Algorithm 1 and the efficient rechecking process used by Algorithm 2.

To accomplish this, we assume that knowledge bases are of the form
KB ⊆ F×T×{0, 1}�. This allows each fact in an entity’s knowledge base to be as-
sociated with a period of validity (as in Section 4.2) and a locally unique identi-
fier (as in Section 4.3). Unlike in Section 4.3, however, the unique identifier for a
given fact does not need to change over time. An entity e will respond to a query
of the form ? f with a response tuple of the form (b, d, (〈e′, id〉)Kq ) ∈ B×N×{0, 1}n.
As before, the b component of this tuple indicates whether e considers f to be
valid, and the d component represents the duration of validity recorded for f
at the time that the response tuple was generated. As in Section 4.3, the e′ and
id portions of this response form an association tuple that provides a means for
the querier to recheck the validity of a given fact without revealing which fact
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is being rechecked or which entity maintains the status information for that
fact. After carrying out their initial query, the querier will then be able to use
the set of association tuples that it has gathered to recheck the simultaneous
validity of the facts in the view much more efficiently than is possible through
repeated use of Algorithm 1.

The aforementioned means of enforcing the sliding window consistency
condition is implemented by Algorithm 3. Prior to explaining this algorithm
in detail, we make the following assumptions, in addition to those made in
Section 4.2.

—The local knowledge base is accessible via the the data structure KB. The
function KB.isLocalId : {0, 1}� → B checks whether the fact associated with a
given identifier has ever been monitored by this knowledge base. The function
KB.lookup : {0, 1}� → B × T returns the validity status and duration of
validity for the fact associated with a given identifier.

—An entity’s remote cache is accessible via the RemoteCache data structure.
This data structure has member functions contains : {0, 1}� → B and lookup :
{0, 1}� → E × {0, 1}�.

Algorithm 3 works as follows. As described earlier, when an entity con-
tributes a fact to a proof tree, they return the fact’s validity status, a duration
of validity, and an association tuple describing how the validity status of this
fact can be efficiently rechecked. For brevity, the details of managing the remote
cache that manages these associate tuples have been omitted from Algorithm 3,
but the procedure for choosing indirect nodes and creating association tuples
used in Algorithm 2 could be used in this algorithm without modification. After
the querying node receives a response tuple, they use RCVRESPONSE method
to insert this response tuple into their local view. This process represents the
initialization phase of the sliding window consistency enforcement algorithm.
We now describe the ongoing verification phase of this algorithm.

To verify that a view V constructed using calls to the RCVRESPONSE method,
the querier calls the CHECKSLIDING function, providing the view V, a widow
length �, and the time at which V was last verified to be sliding window
consistent as arguments. This function first saves the current time and then
calls the RECHECKVIEW method. RECHECKVIEW checks the current validity status
of each fact identified in V by calling ASKREMOTE. ASKREMOTE(e, id), in turn, calls
the RECHECKFACT(id) method at entity e, which looks up the validity of the fact
associated with the identifier id in e’s knowledge base or in the knowledge base
of the entity identified by e’s RemoteCache object, and then returns this status
to the querier. Note that unlike its counterpart in Algorithm 2, RECHECKFACT

does not remove entries from an entity’s RemoteCache object if the remote
look-up returns a false value, as validity fluctuations are permissible under the
definition of sliding window consistency; evictions from this cache will instead
take place by means of some other strategy (e.g., LRU).

After the call to RECHECKVIEW returns, CHECKSLIDING iterates over the state
tuples stored in V and checks to see if each tuple was valid at the previously
saved timestamp. If this check succeeds, CHECKSLIDING indicates that V is still
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Algorithm 3. A sliding window consistency, enforcement algorithm
1: // Receive a fact response tuple relevant to a query issued at time tiss

2: // from some entity e. Only invoked on true facts.
3: Function RCVRESPONSE(〈e, id〉 ∈ E × {0, 1}�, d ∈ N, tiss ∈ T, V ∈ 2S )
4: trcv ← NOW
5: if trcv − tiss ≤ d(1 − δ) then
6: V.insert(id, e, tiss, tiss, false)
7: else
8: V.insert(id, e, tiss, NOW, true)
9:

10: // Recheck the fact tuples making up a view V
11: Function RECHECKVIEW(V ∈ 2S , t ∈ T)
12: for all s ∈ V do
13: (b, d) ← ASKREMOTE(s.id, s.e)
14: ts ← NOW
15: if b then
16: if ¬s.fuzzy ∧ (ts − s.tω ≤ d(1 − δ)) then
17: V.insert(s.id, s.e, s.tα, t, false)
18: else if ts − t ≤ d(1 − δ) then
19: V.insert(s.id, s.e, t, t, false)
20:
21: // Revalidate the fact identified by id
22: Function RECHECKFACT(id ∈ {0, 1}�)
23: if KB.isLocalId(id) then
24: return KB.lookup(id)
25: else if RemoteCache.contains(id) then
26: 〈e, id′〉 ← RemoteCache.lookup(id)
27: return ASKREMOTE(e, id′)
28: else
29: ERROR
30:
31: // Check the sliding window consistency condition on a view V relative to the window size �.
32: // The parameter tlast represents the last time that this consistency condition was true. The
33: // second component in the tuple returned by this function indicates the last time at which the
34: // sliding window consistency condition was verified to hold. This can, in turn, be used as
35: // the tlast argument to future invocations of this function.
36: Function CHECKSLIDING(V ∈ 2S , � ∈ N, tlast ∈ T)
37: t ← NOW
38: if (tlast > 0) ∧ (tlast < t − �) then
39: return (false, tlast)
40: RECHECKVIEW(V, t)
41: status ← true
42: for all s ∈ V do
43: if s.fuzzy ∨ (t < s.tα) ∨ (s.tω < t) then
44: status ← false
45: if status then
46: return (true, t)
47: else if t − � ≤ tlast then
48: return (true, tlast)
49: else
50: return (false, 0)
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sliding window consistent and that all facts were verified to be simultaneously
true at the aforementioned timestamp. Should this check fail but all facts
were previously observed to be simultaneously valid within � time units of
the previously saved timestamp, this previous time of simultaneous validity
is returned in support of V’s continuing sliding window consistency. If neither
of these conditions are true, then V is no longer sliding window consistent
and CHECKSLIDING returns false. Note that the second component of the tuple
returned by CHECKSLIDING indicates the last time at which the sliding window
consistency condition was verified to hold; this timestamp can then be used as
the tlast argument in future invocations of CHECKSLIDING.

We now make the following claim regarding the soundness of Algorithm 3:

THEOREM 7. If the series of n function calls CHECKSLIDING(V,�, 0), . . . ,
CHECKSLIDING(V,�, tn

last) made at times t1, . . . , tn return the values (true, t′
1), . . .,

(true, t′
n) then the view V is sliding window consistent on the interval [t1, tn]

using the window size �, provided that V was initially constructed using only
RCVRESPONSE, was modified only through the above calls to CHECKSLIDING, and
that ti

last = t′
i−1 for all i ≥ 2.

PROOF. By an argument similar to that used in the proofs of Theorems 2
and 4, the RCVRESPONSE function correctly constructs the initial view V. We
must now show that the function RECHECKVIEW correctly updates the fact state
tuples stored in V. This function utilizes the ASKREMOTE function to query the
entity associated with each fact state tuple s ∈ V regarding the associated fact’s
status. This triggers the RECHECKFACT function at the remote entity, which ei-
ther returns a response from its local knowledge base or, if this node is an
indirect node, queries the actual fact provider and returns that response to the
initial querier. If the fact status returned is true and the associated validity du-
ration overlaps an already-established validity interval for this fact even after
it is adjusted to account for clock skew, then this existing validity interval is
lengthened. Otherwise, if the fact is true and the validity duration encompasses
the time t at which RECHECKVIEW was invoked, then the existing validity inter-
val is replaced by the interval [t, t]. Otherwise, the existing validity interval is
left unchanged. Since the changes made to V by RECHECKVIEW are consistent
with the querier’s observations and account for clock skew between nodes in
the system, we can conclude that RECHECKVIEW correctly updates V.

Given that RCVRESPONSE correctly creates views and RECHECKVIEW correctly
updates the validity information stored in a view, we must now show that
CHECKSLIDING correctly enforces the sliding window consistency condition. We
proceed by induction on the number of calls made to the CHECKSLIDING function.
To prove the base case, we must show that if CHECKSLIDING(V,�, 0) is invoked
at time t and returns the tuple (true, t′) then the predicate φsliding(V, t, t,�) holds
true. In this case, the first if statement in CHECKSLIDING will be bypassed, since
tlast = 0, and V will be updated by a call to RECHECKVIEW. Now, CHECKSLIDING

will only return true if the if statement at Line 43 succeeds for each s ∈ V. Since
this test ensures that the validity interval for each s ∈ V includes the time t at
which CHECKINTERVAL was invoked, it implies that the predicate φsliding(V, t, t,�)
holds.
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Assume that the predicate φsliding(V, t1, tn,�) holds if the series of func-
tion calls CHECKSLIDING(V,�, 0), . . . , CHECKSLIDING(V,�, tn

last) are made at times
t1, . . . , tn and return the values (true, t′

1), . . ., (true, t′
n). To complete this proof, we

must now show that if CHECKSLIDING(V,�, t′
n) returns (true, t′

n+1) when invoked
at time tn+1, then the predicate φsliding(V, t1, tn+1,�) holds. As long as the first
if statement in CHECKSLIDING—which ensures that tn+1 is within � of the last
time at which V was evaluated to be sliding window consistent—evaluates to
true, then CHECKSLIDING will update the validity intervals stored in the view
and return (true, t′

n+1). If all of the validity intervals maintained by V could be
extended to include the time tn+1 then t′

n+1 = tn+1, otherwise t′
n+1 = t′

n. In either
case, the theorem holds.

Although Algorithm 3 is proven sound by the above theorem, it is not ide-
ally complete. There could very well be unobserved times between calls to
the CHECKSLIDING function in which the facts comprising V are simultaneously
valid. Entities can, however, balance a trade-off between proximity to ideal
completeness and computational overhead by increasing the frequency of calls
to CHECKSLIDING. We now prove that Algorithm 3 is a policy-safe modification
to the Minami-Kotz protocol.

THEOREM 8. Algorithm 3 is a policy-safe modification to the Minami-Kotz
distributed proof construction protocol.

PROOF. Algorithm 3 does not affect the construction of distributed proofs;
therefore, all integrity policies are still respected. To show that the confidential-
ity policies of nodes in the system are respected by Algorithm 3, we note that
the only difference between the recheck procedure followed by this algorithm
and that followed by Algorithm 2 is that this algorithm also reveals a validity
duration in addition to the fact status. Since disclosing this duration to the
querying entity does not reveal any more confidential information than reveal-
ing the status of a given fact, an argument identical to that used in the proof
of Theorem 5 shows that Algorithm 3 also respects each entity’s confidentiality
policies.

4.5 Modifications for Other Distributed Proof Systems

This section focused on modifying the Minami-Kotz distributed proof system
to enforce various consistency conditions. However, the algorithms presented
can be used in conjunction with other proof systems and can, in fact, be greatly
simplified if implemented within proof systems that are not concerned with
the privacy of fact providers (e.g., Bauer et al. [2005] and Jim [2001]). Specifi-
cally, the query consistency condition can implemented exactly as described in
Algorithm 1. The algorithms for the interval and sliding window-consistency
conditions that were presented in Sections 4.3 and 4.4 can be simplified, how-
ever, since we would no longer need to protect the privacy of fact providers. In
particular, we could use the leaf exposure strategy to implement the interval
consistency enforcement algorithm, since the querier would already know the
identity of each leaf in the proof system. Similar simplifications can be made
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to the sliding window consistency enforcement algorithm, because the privacy
of leaf entities need not be preserved.

5. EVALUATION

In this section, we measure the performance impact of our consistency enforce-
ment algorithms. The environment in which we ran our tests consisted of a 25-
node cluster connected with 100Mbit Ethernet. Each node has a 3.2GHz Intel
Pentium D 940 dual-core processor and 2GB RAM, and runs RedHat Linux AS
4 and Sun Microsystems’ Java runtime (v1.4.2). Our system has approximately
12,500 lines of Java code, of which about 600 lines represent extensions to the
core implementation of the proof construction system described by Minami and
Kotz [2006]. We used the Java Cryptographic Extension (JCE) framework to
implement RSA and Triple-DES (TDES) cryptographic operations. A 1,024-bit
public key whose public exponent is fixed to 65,537 was used in all of our ex-
periments, and the RSA signing operation used MD5 [Rivest 1992] to compute
the hash value for each message to be signed. We used Outer-CBC TDES in
EDE mode to perform symmetric key operations.

During our experiments, we measured the latency of constructing dis-
tributed proof trees using two different strategies to ensure interval consis-
tency. These experiments utilized 25 servers, each of which was run by a dif-
ferent principal. Each query issued during our experiments was of the form
?grant(P, R) where P is a principal and R is a resource. The body of each rule in
any knowledge base is of the form a0(c0), . . . , an−1(cn−1) where each ai is a pred-
icate symbol and each ci is a constant. Our experiments attempted to create
proof trees containing up to 35 nodes. We believe that proof trees of this size
are significantly larger than would be required in most applications, thus, our
results should provide guidelines about the worst-case latency for a wide array
of practical applications. Authorization, confidentiality, and integrity policies
were generated for each of these principals automatically and in such a fashion
as to ensure that valid proof trees of the appropriate size could be constructed.
For each size of proof tree analyzed during these experiments, measurements
were taken during the construction of 10 different proof trees of varying inter-
nal structure.

Figure 6 compares the query-handling latencies of three different proof con-
struction algorithms; each data point is an average of 50 runs (5 runs for each
of the 10 different proof trees generated per proof size). The proof construction
curve illustrates the cost of generating the proof tree corresponding to some ini-
tial query, which also reflects the cost of using Algorithm 1 to enforce the use of
query-consistent views. The leaf exposure curve illustrates the cost of using the
leaf exposure strategy to guarantee that proofs are generated using interval-
consistent views. In this case, the identities of all leaf nodes in the system are
forwarded to the initial querier, who can then recheck the validity of each base
fact directly; this is a time-optimal strategy for constructing interval-consistent
views. The leaf indirection curve represents the cost of generating proofs using
interval-consistent views by leveraging the leaf indirection strategy described
in Algorithm 2.
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Fig. 6. Latency for handling queries.

Figure 6 shows that these two strategies for enforcing the use of interval-
consistent views cost little more than generating the initial distributed proof.
Specifically, the leaf exposure strategy takes only about 10% to 15% more time
than generating the initial proof tree, while the leaf indirection strategy takes
only 25% to 30% more time than generating the initial proof tree. These re-
sults confirm our earlier conjecture that the leaf indirection strategy is a close
approximation of the time-optimal leaf exposure strategy. The leaf indirection
strategy is also vastly more efficient than the naive requery strategy, which
would require 100% more time than generating the initial proof tree. Although
these results depend on our specific implementations, it is still interesting to
note that it is possible to recheck proofs much faster than they can be con-
structed; this may lead to the design of more efficient distributed proof engines
in the future. These efficiency results combined with Theorems 5 and 6 firmly
establish the leaf indirection strategy (as implemented by Algorithm 2) as a
low-cost, privacy-preserving method for ensuring the use of interval-consistent
views during the construction and evaluation of distributed proofs.

We also note that the cost of enforcing the sliding window consistency con-
dition via Algorithm 3 can be calculated using the data from Figure 6. An
execution of Algorithm 3 involving r rechecks of the proof requires the time
indicated on the proof construction curve plus r times the difference between
the proof construction and leaf indirection curves. As was alluded to in Sec-
tion 4.4, this cost is significantly less than using r invocations of Algorithm 1,
which would have a cost of r times the proof construction curve. Further eval-
uation of the overheads of Algorithm 3, and the sliding window consistency
condition in general, requires additional assumptions regarding the applica-
tion domain. This is because the frequency with which the facts comprising a
proof tree are expected to fluctuate will dictate the frequency with which a proof
should be rechecked. Algorithm 3 is compatible with any choice of strategy for
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invoking the CHECKSLIDING function. The development of domain-specific opti-
mal strategies for rechecking distributed proofs is an interesting area of re-
search, but is out of the scope of this article.

6. RELATED WORK

The problem of sampling consistent system views during decentralized autho-
rization protocols was first studied by Lee and Winslett [2006, 2008]. This work
focused on certificate-based authorization protocols in which the entity enforc-
ing a policy was assumed to have access to all certificates used during policy
satisfaction (e.g., see Bauer et al. [2005], Becker and Sewell [2004], Bertino
et al. [2004], Li et al. [2005], Winsborough and Li [2002], Winslett et al. [2005],
and Yu et al. [2003]). The solutions presented by Lee and Winslett [2006, 2008]
leveraged the semantics of certificate issuance and revocation to build consis-
tent views based on particular orderings of online certificate validity checks;
these checks are facilitated through protocols such as OCSP [Myers et al. 1999]
and COCA [Zhou et al. 2002]. We extend these results by demonstrating that
light-weight view-consistency enforcement schemes can also be designed for
more general decentralized authorization frameworks in which (i) portions of
a proof tree may be hidden from the policy evaluator and (ii) simple assertions
authenticated with digital signatures or keyed HMACs are used as proof atoms,
rather than CA-issued certificates. These more general frameworks are likely
candidates for use in pervasive computing systems and sensor networks.

The Antigone Context Framework (ACF) provides a general-purpose frame-
work for incorporating contextual data into authorization policy enforcement
systems [McDaniel 2003]. ACF allows policy writers to incorporate contex-
tual assertions into policies without requiring that the policy language include
support for obtaining this data. However, ACF does not provide explicit mecha-
nisms for enforcing the types of consistency constraints discussed in this article.

Our work is also closely related to concurrency control and consistency en-
forcement in distributed systems [Tanenbaum and van Steen 2002], distributed
databases [Cellary et al. 1988], and distributed shared memory [Adve and
Gharachorloo 1996]. In general, solutions to the consistency problem in these
domains assume that multiple entities will be updating values stored at multi-
ple locations within the system and as such, maintaining data consistency is of
concern to everyone. Therefore, their solutions typically involve the cooperation
of multiple entities. However, in distributed authorization protocols, there is
little incentive for entities to take part in complicated consistency preservation
protocols, as view consistency is only of concern to the policy evaluator. There-
fore, the solutions developed in the distributed systems, distributed databases,
and distributed shared memory literature are not suitable for our problem do-
main; the solutions developed in this article require only the cooperation of a
minimal number of participants in the protocol.

A final area of related work is the collection of system state snapshots in
distributed systems. Collecting consistent snapshots that can be used to eval-
uate stable predicates over the system state is a well-known problem, to which
a solution is presented by Chandy and Lamport [1985]. Unfortunately, the
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unstable nature of fact statuses prevents the use of this algorithm for solving
the view consistency problem. There exist algorithms for collecting distributed
state snapshots that can be used to evaluate unstable predicates (for a sur-
vey, see Babaoğlu and Marzullo [1993]), though these algorithms have very
high overheads and make unreasonable assumptions about process coopera-
tion for our problem domain. Instead, we leverage our restricted domain of
interest—that is, distributed proof systems—to develop lighter weight, more
efficient solutions for sampling consistent distributed proofs while making only
minimal assumptions about process cooperation.

7. CONCLUSIONS

In this article, we explored the problem of enforcing consistency constraints
on the system views used during policy evaluation in an authorization system
based on distributed proof construction. In particular, we focused on enabling
the use of consistent system views when evaluating policies within the proof
construction framework presented by Minami and Kotz [2005]. This framework
complicates the view consistency problem, as the confidentiality and integrity
policies declared by entities in the system may render the full details of a given
proof tree unavailable to the initial querier. Further, simple signed assertions
are used as facts in the system, rather than CA-issued certificates.

Within this framework, we formally defined the view consistency problem
and several important levels of view consistency. We then presented efficient
algorithms for enforcing three levels of view consistency, proved the soundness
of each algorithm, commented on the proximity of these algorithms to ideal
completeness, and proved that all three algorithms represent policy-safe modi-
fications to the underlying proof system. That is, none of these algorithms have
any effect on the proper enforcement of confidentiality or integrity policies de-
fined by entities in the system. We then quantitatively evaluated the impact of
these algorithms on an implementation the proof system presented by Minami
and Kotz [2005], which was found to be minimal. Our solutions generalize pre-
vious work on the view consistency problem, which assumed that all assertions
used during the proof construction process were encoded in CA-issued certifi-
cates and that each assertion used during the protocol was available to the
policy evaluator for inspection [Lee and Winslett 2006; Lee and Winslett 2008].
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