Location Privacy in Pervasive Computing

Paper by
Alastair R. Beresford and Frank Stajano

Presented by
Nicholas Farnan
11-4-09
The Problem

- Location privacy: the ability to prevent other parties from learning one's current or past location
- As networked computing devices have become increasingly pervasive in modern life, the threat to location privacy has been increasing as well
Why is this a problem?

- Did you go to an anti-war rally on Tuesday?
- Were you at Bob Jackson's a week before to plan it?
- Did you walk into an abortion clinic?
- Did you see an AIDS counselor?
- Which church do you attend? Which mosque? Which gay bars?
- Have you been checking into a motel at lunchtimes?
- Why was your secretary with you?
- Did you skip lunch to pitch a new invention to a VC? Which one?
I have nothing to hide!

- Your employer doesn't need to know things about whether, when, and where you went to church.
- Your co-workers don't need to know how late you work or where you shop.
- Your sister's ex-boyfriend doesn't need to know how often she spends the night at her new boyfriend's apartment.
- Your corporate competitors don't need to know who your salespeople are talking to.
Location-Aware Systems

- Allows users to track their friends
- User's locations are updated from smartphones

![Google Latitude Map](image)
Active Bat
Active Bat

• Bats are polled with some regularity over radio, and emit an ultrasonic chirp

• Ceiling sensors measure time differences in chirps received to determine location
Mix Network

Sender

Mix A

Mix B

Mix C

Destination

dest, msg

k_A

k_B

k_C

k_C

k_C

k_X = encrypted with public key of Mix X
Mix Zones

- Zones where no users have registered callbacks (where no location-based activity occurs)
- Application zones are just the opposite
- Everytime a user enters a mix zone, they adopt a new pseudonym for interacting with applications
Anonymity Sets

- The *anonymity set* of a given mix zone during a given time period is the set of users in that mix zone during that time period.
- Users could be notified of the anonymity set size (average or current) of neighboring mix zones before they begin using location-aware applications in that area.
Testbed
Corridor
Corridor, Hallway, and Stairwell
User Movement Analysis

- This still doesn't address the problem of an attacker analyzing user movement
- Information theoretic approaches have been used to analyze the anonymity provided by mix networks, so why not use the same idea here?
Entropy

- For a set of n equiprobable elements, need $\lg n$ bits to identify one
- The entropy of a file is the theoretical limit to the size of a losslessly compressed version
User Movement Analysis

<table>
<thead>
<tr>
<th></th>
<th>East</th>
<th>North</th>
<th>South</th>
<th>West</th>
<th>Mix Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Zone</td>
<td>96</td>
<td>47</td>
<td>66</td>
<td>101</td>
<td>814</td>
</tr>
<tr>
<td>West</td>
<td>125</td>
<td>13</td>
<td>17</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>South</td>
<td>29</td>
<td>55</td>
<td>7</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>North</td>
<td>39</td>
<td>6</td>
<td>64</td>
<td>39</td>
<td>66</td>
</tr>
<tr>
<td>East</td>
<td>24</td>
<td>47</td>
<td>74</td>
<td>176</td>
<td>162</td>
</tr>
</tbody>
</table>

Subsequent zone, s

Preceding zone, p
Entropy Analysis

- Consider colluding applications in the east and west ends of the lab
- Each sees one of its users disappear during a time period t and a new pseudonym appear at the start of $t + 2$ ($t + 1$ assumedly spent in the mix zone)
- Does each have the same user again, or did the users change places?
Entropy Analysis

- *observed* = EEWW v EWWE v WWEE v WEEW
- *uturn* = EEWW v WWEE
- \(P(\text{EWWE}) = P(E, W) * P(W, E) \), according to historical data presented in the matrix
- \(P(\text{uturn} \mid \text{observed}) = 0.001 \)
- There is a 99.9% chance that each has the opposite's previous user, and the pseudonyms can be linked with incredibly high probability
Wait, I Said *Entropy* Analysis

- \[H(X) \equiv - \sum_{i=1}^{n} p(x_i) \log_b p(x_i) \]

- The entropy of this situation (number of bits needed to describe whether the users switched application spaces or returned to their origins) is 0.012 bits
Future Work

- How are user preferences managed?
 - If you request the price of the same type of coffee, and you're the only one who likes mocha-frappe-latte-chinos, the coffee shop can rather uniquely identify you

- How should a user react to an environment of insufficient anonymity?

- This was a relatively small-scale test, what would happen on, say, a city level?