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When pet owners are away from home, the concerns on pet care would be an issue of their trips. The advances in technology could help reduce the concerns by providing a ubiquitous pet care monitoring system. In this study, a web-based pet care system based on slow intelligence principles was described. The slow intelligence principles were employed to improve the performance of pet behaviors recognition over time. Once a sign of abnormal behaviors has been observed, a safety alert will be triggered and sent to the pet owners or caregivers. In order to demonstrate the effectiveness of the proposed pet care framework, a realistic dog care system was developed and tested. Experimental results showed that the proposed approach is promising and flexible for extending to similar applications such as senior patient care, due to the component-based design approach.
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1.    Introduction
The market for pet care is in its steady growth rate, with an estimated $55.53 billion will be spent on pets in the U.S in 2013, according to the American Pet Products Association (APPA) [1]. Advances in technology have improved the quality of our lives and changed healthcare industry in the past decade. However, there has been little research reported on the subject of using technology for pet care. When pet owners are away from home, the care for their pets could rise to be the top concern. With today’s technology, this concern can be reduced. 
In this study, a web-based pet care system was developed to provide functions such as ubiquitous pet monitoring and anomaly pet behavior detection, which is beneficial when pets are out of owners’ sight. For example, when the pet is motionless or super-active for a long period of time, the system will sent an alert to pet owners immediately. The framework of the pet care system allows easy expansion to add more functionalities for different applications. In order to improve the performance of pet behavior recognition, slow intelligence principles originated from slow intelligence systems were applied to the design of the pet care system. 

A slow intelligence system (SIS) is a general-purpose system characterized by being able to improve its performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration [2]. An SIS continuously learns, searches for new solutions and propagates and shares its experience with other peers. It consists of multiple decision cycles such that actions of the slow decision cycle may override actions of the quick decision cycle, resulting in poorer performance in the short run but better performance in the long-run. In [3], we explained a visual specification approach in detail using dual visual representations, and described the user interface design to produce and manage the dual visual representations for the generic SIS system.
The paper is organized as follows: In section 2, a theoretical model of slow intelligence systems is provided. In section 3, the architecture of the component-based pet care system is described. In section 4, three operational modes and the web-based interface of the system is introduced. In section 5, we apply the slow intelligence principles to design the pet care system. Experimental results and discussions are presented in section 6 and section 7, respectively.
2.    A Theoretical Model of Slow Intelligence Systems
In this section, a theoretical model of slow intelligence systems is provided using an abstract machine. Through the use of abstract machines, it is possible to compute and simulate the problem-solving process for a specific problem without having to construct an actual system.

An abstract machine Msis for slow intelligence systems is defined as:
Msis = { P, S, Po, cycle1, cycle2, …, cyclen} 


       (1)
where P is the problem space, S the solution space, Po the initial problem set and cycle1, cycle2, …, cyclen the computation cycles. The problem space P is a nonempty, enumerable set of problem elements p1, p2, …, pm. A problem set Pk is a finite subset of P. At least some of the problem elements in the problem space are also the solution elements. Therefore, the solution space S is a nonempty subset of the problem space P. A solution set S is a finite subset of S.

Starting from an initial problem set Po, the objective of the abstract machine Msis for the slow intelligence system is to derive a problem set Pj that is also a solution set, i.e., it contains only solution elements, by applying one or more of the computation cycles: cycle1, cycle2, …, cyclen.

A computation cycle is a sequence of slow intelligence operators to transform problem sets. The following five slow intelligence operators are defined for problem sets.
(1) Enumerator: P1 -enum< P2  is the enumerator that takes each problem element of P1 to generate a number of new elements, which are put into P2.
(2) Eliminator: P1 >elim- P2  is the eliminator that eliminates non-solution elements of P1 and put the rest into P2.

(3) Concentrator: P1 >conc= P2 is the concentrator that selects some problem elements of P1, which are put into P2.

(4) Adaptor: P1 +adap= P2 is the adaptor that inputs information from the environment and modifies elements of P1 to produce P2 according to the adaptation rule. 

(5) Propagator: P1 =prop+ P2 is the propagator that outputs information to the environment and modifies elements of P1 to produce P2 according to the propagation rule. 

As an example, the abstract machine Msis may have the following simple computation cycle:

cycle1: Po -enum< P1 >elim- P2
This simple computation cycle works as follows. First, we enumerate the potential solution elements to generate the problem set P1 from the initial problem set Po. Then, we eliminate those that are not solution elements to generate another problem set P2 containing only the solution elements. The abstract machine Msis may have another simple computation cycle:

cycle2: Po -enum< P3 -enum< P4 -enum< P5 >elim- P6
In this computation cycle, three enumeration operators are used in sequence to enumerate potential solution elements, thus generating a much larger problem set P5. Then, we apply the elimination operator to derive the final solution set P6.

A slow intelligence system can have multiple computation cycles. A control mechanism with evaluation rules in the system decides the transfer criteria and the switching mode among the cycles. To provide an appropriate control mechanism we can add guards to the two computation cycles:
cycle1: [guard1,2] Po -enum< P1 >elim- P2
cycle2: [guard2,1] Po -enum< P3 -enum< P4 -enum< P5 >elim- P6
A guard for cyclei is a predicate of the form guardi,j defined on problem sets and evaluated whenever a problem set is generated. If the predicate is evaluated to be true then control is transferred to cyclej. If the predicate is evaluated to be false then Msis remains in cyclei. If this is the last problem set then the machine halts.

For example, guard1,2 may specify if the problem set P2 is empty then control is transferred to cycle2 (a slow computation cycle). In other words, if cycle1 produces no solutions then Msis should switch to cycle2 even though cycle2 is computationally more expensive. If P2 is non-empty then Msis halts, i.e., a solution is found. Conversely, guard2,1 may specify if the problem set P6 is non-empty then control is transferred to cycle1 (a fast computation cycle). In other words, once cycle2 produces a solution then Msis should switch back to cycle1. If P6 is empty then Msis halts, i.e., no solution can be found.

3.    Architecture of the Pet Care System
3.1.    System architecture
Fig. 3.1 illustrates the architecture of the proposed pet care system, which comprises five key components: (1) the PetCare SIS Server; (2) the SIS creator; (3) the PetCare Management Server; (3) the Certificate Management Server, and (5) the PetCare Imaging and Database Server.
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Fig. 3.1.  System architecture of the proposed pet care system.

The PetCare SIS Server is responsible for the control and management of slow intelligence components created by the SIS creator. The SIS creator is a software tool used to create slow intelligence components for a specific application. In this study, the SIS creator is used to create the required slow intelligence components (enumerator, eliminator, concentrator, and time controller) for PetCare systems. The PetCare Management Server provides configuration updates and management for the PetCare system. 

The Certificate Management Server is used to issues a digital certificate for virtual private networks (VPN) equipment and software with a USB key. The purpose of utilizing virtual private networks is to extend a private network of the pet care system over public networks such as the Internet. This network architecture enables a host computer to send and receive data over public networks as if they were an integral part of the private network of the pet care system, with all the functionalities, security, and management policies.

The PetCare Imaging and Database Server provides the storage and management of an organized collection of the captured images and multimedia data. Image capturing devices such as webcams or IP cams can be connected to the PetCare Imaging and Database Server for image and multimedia data acquisition.
3.2.    Workflow of the pet care system
The proposed pet care system allows users to login for monitoring their pets over Internet/Intranet. As an example of requesting pet images from a client user, the workflow and messages routing process are described as follows.

At first, users need to login with their accounts. The log in credentials will be sent to the PetCare Management Server for verification. Once verified, a welcome web page that gives users quick access to pet images will be displayed. On this welcome page, users can perform functions provided by the system as well as adjust parameter settings such as login passwords and system configuration. 
The PetCare Management Server determines whether the user has authorized for the request. If the user is not authorized for this request, an unauthorized prompt will be displayed, indicating ineligibility of viewing the page. If the credentials are authorized, the request message will be forwarded to the SIS Server through the Imaging and Database Server for further processing. Then, the SIS Server performs actions to respond to the user according to the request. The sequence of the request-response message routing is depicted in Fig. 3.2. 
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Fig. 3.2.  Workflow of the pet care system.

The log-in procedure for admin users and client users is the same with a slight difference in the display of the admin page for administrators and the welcome page for client users after the credentials are successfully verified.

The admin page is designed with administrative functions for the system administrator to manage users’ data, system configuration and maintenance. With the admin page, the system administrator can observe the message routing, which is useful during the debugging stage. 

The proposed pet care system is a component-based software system that can be illustrated by the UML deployment diagram as shown in Fig. 3.3.
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Fig. 3.3.  A UML diagram of the component-based pet care system.

In Fig. 3.3, various algorithms running on the SIS server aim to identify the pet states, such as pet-absence or pet-not-movement. The class InputProcessor is designed to process input images captured from the webcam, and the class Uploader is used to upload the data over the Internet. The WebServer provides PetCare Management services to authorized users. A universal interface, PrjRemote, is developed for the debugging purpose during the system development.

4.    Operational Modes of the Pet Care System
The proposed pet care system provides three operational modes, namely the preparation mode, the training mode, and the working mode. A web-based graphical user interface is developed as a client-side gateway to facilitate the access of the pet care system. The three operational modes can be accessed individually through the developed web interface, and can also be modified to form an automatic training mode. In the automatic training mode, the image sequences derived from the working mode are used to train the recognition system in fully automatic training fashion.
4.1.    Preparation modes

By clicking the preparation mode button on the mode selection page, the logged-in user can enter the preparation mode. A screen shot of the preparation mode is shown in Fig. 4.1. The main functions in the preparation mode have nine components described as follows.
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Fig. 4.1. A screen shot of the preparation mode.

(1) Backward button: this button is designed to move backward to the previous image frame from the current image. 

(2) Forward button: this button is designed to move forward to the next image frame from the current image.

(3) Jump textfield: this textfield is designed to provide a specific date-time selection. By clicking in this textfield, the DateTime picker will be displayed, as shown in Fig. 4.2. Followed by clicking the Go To label, users can directly jump to the designated image frame.

(4) State selector: this function provides users with the selection of pet states. By clicking in the drop-down list, a list of predefined pet states will be displayed for users to select. Followed by clicking the Change State label, users can change the pet state associated with the current image.

(5) Save button: this button is designed to save the current pet state into an event file.

(6) Log-out button: this button is designed to log out of the system.

(7) Fast-forward button: this button is designed to quickly change pet states when annotating a sequence of the images. When the user clicks the fast-forward button, the preparation mode will automatically jump to the next image and assign the pet state indicated in the state selector. The action will continue and go through the image sequence till the user clicks the fast-forward button again. 

(8) Status bar: the status bar is designed to display detailed information about the current image, including the index, the total number, the time stamp, and the pet state.

(9) Collapse/Expand button: this button is designed to collapse/expand the function panel.
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Fig. 4.2.  The DateTime picker in the preparation mode.

4.2.    Training modes

The training mode provides off-line training and on-line automatic training for users to select. In off-line training, users need to prepare training samples that contain image sequences and the associated even-file produced in the preparation mode. The web-based interface in the training mode provides a file chooser for users to upload the requires training samples. Running at the server side, the training procedure has three steps listed as follows.

(1) The SIS system retrieves the image sequences from the uploaded training file and analyzes pet states by running the behavior recognition algorithms deployed by the user.

(2) For each algorithm, the identified image state is compared with the annotated state. After the entire image sequence has been processed, the algorithm with the highest hit rate is selected as the best algorithm.

(3) The user clicks the save button to confirm the result and store the parameters of the selected best algorithm for the use in the working mode at the next stage.

4.3.    Working modes

By clicking the working mode button on the mode selection page, the user can enter the working mode. The interface for the working mode is similar to the preparation mode, except for the following additional functions. 

(1) Parameter setting: this function provides users with parameter settings to adjust the sampling rate and duration of the image sequence for analysis. The default sampling rate is one image frame per minute.
(2) Alert panel: this alert panel displays the alert associated with the current image to provide users with warning information about their pet behaviors. 

(3) State selector: this function provides users with pet state selection. It is inactive when the working mode is loading images, and become active when the working mode is paused. 

(4) Pause/Play button: this button is used to pause or resume the working mode. When paused, the user will be allowed to use the state selector to assign pet states. 

The SIS-based pet care system processes the input images at the sampling rate defined in the parameter setting, and applies the best algorithm selected in the stage of the training mode. When an abnormal behavior is detected, an alert with warning messages will be sent to the designated users. The working mode also allows users to securely monitor their pets from anywhere through the Internet. 
4.4.    Web-based interface

A web-based interface was developed to provide users with an easy-to-use way to access the system with two different login accounts: the admin account and the client user account. The admin users are endowed with full features of the system, including user management and system settings, while the client user account only has limited access functions. For a client user, the login page will be directed to the working mode for pet state monitoring. After logging in with admin accounts, the user will be presented with the mode selection page where the admin users can select among three different operational modes. 

All the source code of the web-based interface are open to the public and can be downloaded from the URL at: 

https://petcaresystemwebinterface.googlecode.com/svn/trunk/. In order to set up the interface, the installation of a web server is required. The SIS system must be installed in the same directory of the web-based interface.
5.    Slow Intelligence Principles for Pet Care System Design
In this section, we describe how to apply slow intelligence principles to design a pet care system. A dog care system is used as an example to demonstrate the effectiveness of the proposed approach. The task here is focused on selecting the best algorithm among different deployed algorithms through the use of slow intelligence principles for dog states recognition. 

At present, there are five dog behavior states defined in this experiment for illustration purpose, including sleeping, standing, eating, playing, and absence (out-of-sight). More dog states can be included to accommodate practical applications. 

5.1.    Recognition algorithms for evaluation

Two commonly used recognition algorithms, hidden Markov models and support vector machines, were adopted and evaluated for dog state recognition in this study. 

The hidden Markov model (HMM) is well known for its application in temporal pattern recognition, and widely used to represent a process that the states in a process are not fully observable [4], such as speech recognition and activity recognition [5]. A hidden Markov model can be represented as a triple ((, A, B).

where

(=((i) is the vector of the initial state probabilities

A=(aij) is the state transition matrix
B=(bij) is the emission matrix
Suppose that an HMM,  for each state. At each time step, the state of the dog is in an unobservable state q(t), which emits some observed symbol o(t). The transition probabilities among hidden states are defined as P(qj(t+1)|qi(t))=aij. The emission probability is denoted as P(ok(t)|qj(t))=bjk. At first, we collect data for training the HMM to obtain model parameters aij and bjk using (2), the Baum-Welch algorithm [6]. 
has five hidden states with initial state probabilities (i
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Suppose that we have a series of observed actions O={o1, o2,…,oT}} based on the observed data. The optimal sequence, O* can be found by applying the Viterbi algorithm using (3)., and we want to predict the state sequence Q={q1, q2,…,qT}
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(3)
This refers that the trained HMM can be used to classify the defined five dog states.
In our problem setting, the observable states are features extracted from each captured image. The hidden states correspond to the predefined five possible dog states. The parameter learning task in HMM is to find the best set of state transition and output probabilities, given an output sequence. 
The second algorithm for evaluation is the support vector machines (SVM). The SVM for this experiment is used as a classifier to classify each image into its corresponding state. We use LIBSVM to implement SVM for our multiclass classification task [7]. The selection of kernel function and related parameters are followed the guideline described in [8]. Aside from the HMM and SVM models, there are other algorithms can be applied to dog state recognition. We only deployed these two models for illustration purpose. The slow intelligence principles are adopted to select the best algorithm automatically between the two recognition models. 

5.2.    Dataset description

The dataset for offline training contains images taken from four separate days. For each day, the camera is set at a fixed position for the capture duration from 8:00am to 6:00pm. Each image is of the size of 160*120 pixels. The locations of images taken during these four days include two scenes, one in a kitchen (date on 2012-9-28 and 2012-10-5) and in a living room (date on 2012-10-18 and 2012-10-19). 
In the data pre-processing process, we manually annotate five typical dog states from the collected training data using the developed web interface in the preparation mode. Fig. 5.1 shows some of the samples. The annotated data were used as training data in the training stage.
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Fig. 5.1.  Five typical dog states in two scenes.
6.    Experimental Setup and Results
In HMM, the observable states are the extracted image features. We equally divide an image frame into 16 sub-regions, and assign them with a corresponding number. The RGB color histogram of the image is used as the features for analysis. In particular, we extract the histogram counts with 256 bins for each sub-region and then concatenate 16 sub-regions with 256*3 features from each sub-region to construct the feature vector.
The dog state is detected and identified by observing the neighborhood of the sub-region that most occupied by the dog. For example, in Fig. 6.1, the most occupied sub-region is region 16. Thus, we can quickly detect the dog and make further analysis for dog state recognition through the predefined recognition algorithms.
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Fig. 6.1.  An image is divided equally into 16 sub-regions.
In the experiment, we use one day out of the four-day data (2012-9-28, 2012-10-5, 2012-10-18, 2012-10-19) as the training set, and test the trained model using data on the other three days for validation. We apply the slow intelligence principles to compare their recognition accuracy and select the relatively best one to the pet care application. The experimental results are show in Table 6.1. From Table 6.1, we can observe that:
1) The performance of the model learned from one scene has better testing performance on the same data than that from different scenarios. 
2) The performance of the system can be trained on the collected dataset to learn to identify dog states. By adaptively selecting and modifying the training samples through slow intelligence principles in the training process, the trained model has better performance than that using a single recognition algorithm.
3) HMM performs better than SVM on the scene of kitchen dataset while SVM has better performance on the living room dataset. Generally, the best model with most training accuracy has the best performance for testing data. 

Table 6.1. The experimental results of recognition accuracy.
	Date/Place
	Training accuracy

(HMM/SVM)
	Test accuracy (HMM/SVM)

	
	
	D1/K1
	D2/K2
	D3/L1
	D4/L2

	D1/K1
	0.647/0.597
	
	0.859/0.857
	0.199/0.030
	0.051/0.002

	D2/K2
	0.790/0.757
	0.637/0.666
	
	0.879/0.030
	0.136/0.002

	D3/L1
	0.813/0.935
	0.066/0.192
	0.045/0.074
	
	0.112/0.919

	D4/L2
	0.820/0.882
	0.112/0.192
	0.035/0.074
	0.818/0.879
	


D1: 2012/9/28, D2: 2012/10/5, D3: 2012/10/18, D4: 2012/10/19
K1: Kitchen #1, K2: Kitchen #2, L1: Living Room #1, L2: Living Room #2
Based on these results, the SIS-based pet care system can automatically select the best algorithm for each training set and apply it to the testing data. Moreover, when the scenarios of training data (environment) change, SIS can self-learn and evolutionarily choose the most suitable algorithm according to the corresponding dataset. The evolutional process continues to run till the test accuracy is satisfied or the accuracy gained from last iterative step less than a predefined threshold. 

The operation of the SIS-based experimental scenario is illustrated in Fig. 6.2. We can first manually annotate one day data in the preparation mode, and automatically select the best algorithm according to the recognition accuracy, and apply it to the training mode.
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Fig. 6.2.  The operation of SIS-based pet care system.
7.    Discussion 

The experimental results confirm the slow intelligence approach leads to performance improvements. Similar slow intelligence principles, and lessons learned from this study, can be applied to the design of senior patient care systems that share many similar characteristics of the proposed pet care system.  Due to the component-based design approach, extensions to such applications will be relatively easy.

What we plan to do next is to experiment with a slow intelligence system having two computation cycles, as described at the end of Section 2. In a fast computation cycle the previously learned algorithm is always applied. If the performance falls below a preset threshold then the system switches to a slow computation cycle that evolutionarily chooses the most suitable algorithm according to the training dataset.  After the learning, the system switches back to the fast computation cycle.

For more sophisticated slow intelligence systems, there can be more than two computation cycles. The hypothesis is that such a slow intelligence system with multiple computation cycles will have an average response time as good as that for non-learning fast response systems, and average performance as good as that for learning adaptive systems. Further experiments will be conducted to confirm whether this hypothesis is true. 
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