Many probability questions are concerned with some numerical value associated with an experiment.

- Number of 1 bits generated
- Number of "heads" flips
- Beats per minute of a heart
- Number of boys in a family
- Longevity of a chicken
Definition: A random variable is a function from the sample space of an experiment to the set of real numbers \(\mathbb{R} \). That is, a random variable assigns a real number to each possible outcome.

Example: Suppose that a coin is flipped three times. Let \(X(s) \) be the random variable that equals the numbers of heads that appear when \(s \) is the outcome. Then \(X(s) \) takes the following values:

- \(X(\text{HHH}) = 3 \)
- \(X(\text{HHT}) = X(\text{HTH}) = X(\text{THH}) = 2 \)
- \(X(\text{TTH}) = X(\text{THT}) = X(\text{HTT}) = 1 \)
- \(X(\text{TTT}) = 0 \)

Note: \(X \) is not a variable, and is not random. \(X \) is a function!
Definition: The distribution of a random variable X on a sample space S is the set of pairs $(r, p(X=r))$ for all $r \in X(S)$, where $p(X=r)$ is the probability that X takes the value r.

Note: A distribution is usually described by specifying $p(X=r)$ for each $r \in X(S)$.

Example: Assume that our coin flips from the previous slide were all equally likely to occur. We then get the following distribution for the random variable X:

- $p(X=0) = 1/8$
- $p(X=1) = 3/8$
- $p(X=2) = 3/8$
- $p(X=3) = 1/8$
Many times, we want to study the expected value of a random variable

Definition: The expected value (or expectation) of a random variable \(X(s) \) on the sample space \(S \) is equal to:

\[
E(X) = \sum_{s \in S} p(s)X(s)
\]

For every outcome... use the probability of that outcome occuring... to weight the value of the random variable for that outcome.

Note: The expected value of a random variable defined on an infinite sample space is defined iff the infinite series in the definition is absolutely convergent.
Example: Let X be the number that comes up when a die is rolled. What is the expected value of X?

Solution:

- 6 possible outcomes: 1, 2, 3, 4, 5, 6
- Each outcome occurs with the probability $1/6$
- $E(X) = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6$
- \[= 21/6 \]
- \[= 7/2 \]
Example: A fair coin is flipped three times. Let S be the sample space of the eight possible outcomes, and X be the random variable that assigns to an outcome the number of heads in that outcome. What is the expected value of X?

Solution:

- Since coin flips are independent, each outcome is equally likely
- $E(X) = 1/8[X(\text{HHH}) + X(\text{HHT}) + X(\text{HTH}) + X(\text{THH}) + X(\text{TTT}) + X(\text{TTH}) + X(\text{THT}) + X(\text{TTT})]$
- $= 1/8[3 + 2 + 2 + 2 + 1 + 1 + 1 + 0]$
- $= 12/8$
- $= 3/2$
If S is large, the definition of expected value can be difficult to use directly

Definition: If X is a random variable and p(X=r) is the probability that X = r (i.e., p(X=r) = \(\sum_{s \in S, X(s)=r} p(s) \)), then

\[
E(X) = \sum_{r \in X(S)} p(X = r)r
\]

Each value of X...

... is weighted by its probability of occurrence.

Proof:

- Suppose that X is a random variable ranging over S
- Note that p(X=r) is the probability that X takes the value r
- This means that p(X=r) is the sum of the probabilities of the outcomes s\(\in S \) such that X(s) = r
- It thus follows that \(E(X) = \sum_{r \in X(S)} p(X = r)r \).

\(\square \)
Example: Let X be the sum of the numbers that appear when a pair of fair dice is rolled. What is the expected value of X?

Recall from last week:
- $X(1,1) = 2$ \(p(X=2) = 1/36 \)
- $X(1,2) = X(2,1) = 3$ \(p(X=3) = 2/36 = 1/18 \)
- $X(1,3) = X(2,2) = X(3,1) = 4$ \(p(X=4) = 3/36 = 1/12 \)
- $X(1,4) = X(2,3) = X(3,2) = X(4,1) = 5$ \(p(X=5) = 4/36 = 1/9 \)
- $X(1,5) = X(2,4) = X(3,3) = X(4,2) = X(5,1) = 6$ \(p(X=6) = 5/36 \)
- $X(1,6) = X(2,5) = X(3,4) = X(4,3) = X(5,2) = X(6,1) = 7$ \(p(X=7) = 6/36 = 1/6 \)
- $X(2,6) = X(3,5) = X(4,4) = X(5,3) = X(6,2) = 8$ \(p(X=8) = 5/36 \)
- $X(3,6) = X(4,5) = X(5,4) = X(6,3) = 9$ \(p(X=9) = 4/36 = 1/9 \)
- $X(4,6) = X(5,5) = X(6,4) = 10$ \(p(X=10) = 3/36 = 1/12 \)
- $X(5,6) = X(6,5) = 11$ \(p(X=11) = 2/36 = 1/18 \)
- $X(6,6) = 12$ \(p(X=12) = 1/36 \)

So we have that:
- $E(X) = 2(1/36) + 3(1/18) + 4(1/12) + 5(1/9) + 6(5/36) + 7(1/6) + 8(5/36) + 9(1/9) + 10(1/12) + 11(1/18) + 12(1/36)$
- $= 7$
We can apply this formula to reason about Bernoulli trials!

Theorem: The expected number of successes when n independent Bernoulli trials are performed, in which p is the probability of success, is np.

Proof:

- Let X be a random variable equal to the number of successes in n trials.
- We know from last week that $p(X=k) = C(n,k)p^kq^{n-k}$. So:

\[
E(X) = \sum_{k=1}^{n} kp(X = k)
\]

Definition of $E(X)$

\[
= \sum_{k=1}^{n} kC(n,k)p^k q^{n-k}
\]

Probability of k successes in n trials

\[
= \sum_{k=1}^{n} nC(n-1,k-1)p^k q^{n-k}
\]

Lemma: $kC(n,k) = nC(n-1,k-1)$
Proof (continued)

- \[np \sum_{k=1}^{n} C(n-1, k-1)p^{k-1}q^{n-k} \quad \text{Factor out np from each term} \]

- \[np \sum_{j=1}^{n-1} C(n-1, j)p^{j}q^{n-1-j} \quad \text{Shift index } j = k-1 \]

- \[= np(p + q)^{n-1} \quad \text{Binomial theorem} \]

- \[= np \quad \text{p+q = 1 \, \Box} \]

Note: As long as we can prove that \(kC(n,k) = nC(n-1,k-1) \), the theorem has been proved, since we have shown that \(np \) is the expected number of successes in \(n \) independent Bernoulli trials.
Proof of Lemma

Lemma: \(kC(n,k) = nC(n-1,k-1) \)

Proof:

- \(kC(n,k) = \frac{k(n!)}{[k!(n-k)!]} \)
 \(\quad \text{Definition of } C(n,k) \)
- \(= \frac{n!}{[(k-1)!(n-k)!]} \)
 \(\quad \text{Cancel out } k \text{ term} \)
- \(= \frac{n(n-1)!}{[(k-1)!(n-k)!]} \)
 \(\quad \text{Factor out } n \text{ from numerator} \)
- \(= \frac{n(n-1)!}{[(k-1)!(n-1)-(k-1))!]} \)
 \(\quad n-k = (n-1) - (k-1) \)
- \(= nC(n-1,k-1) \)
 \(\quad \blacksquare \)
Theorem: If $X_1, X_2, ..., X_n$ are random variables on S and if a and b are real numbers, then

1. $E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$
2. $E(aX + b) = aE(X) + b$

Proof:

- To prove the first result for $n=2$, note that
 \[E(X_1 + X_2) = \sum_{s \in S} p(s)(X_1(s) + X_2(s)) \]
 \[= \sum_{s \in S} p(s)X_1(s) + \sum_{s \in S} p(s)X_2(s) \]
 \[= E(X_1) + E(X_2) \]

- The case with n variables is an easy proof by induction

- To prove the second property, note that
 \[E(aX + b) = \sum_{s \in S} p(s)(aX(s) + b) \]
 \[= \sum_{s \in S} p(s)aX(s) + \sum_{s \in S} p(s)b \]
 \[= a\sum_{s \in S} p(s)X(s) + b\sum_{s \in S} p(s) \]
 \[= aE(X) + b \]

\blacksquare
Example: What is the expected value of the sum of the numbers that appear when two fair dice are rolled?

Solution:

- Let X_1 and X_2 be random variables indicating the value on the first and second die, respectively
- Want to calculate $E(X_1 + X_2)$
- By the previous theorem, we have that $E(X_1 + X_2) = E(X_1) + E(X_2)$
- From earlier in lecture, we know that $E(X_1) = E(X_2) = 7/2$
- So, $E(X_1 + X_2) = 7/2 + 7/2 = 7$

Note: This agrees with the (more complicated) calculation that we made earlier in lecture.
Observation: We can formulate many hard problems in terms of the sum of much easier problems!
The forgetful coat-check clerk

Example: A careless coat-check clerk takes the coats of \(n \) people at a restaurant, but forgets to attach the claim number to each coat. When customers return for their coats, the clerk simply returns a coat at random. What is the expected number of coats returned correctly?

Solution:

- Let \(X \) be the random variable that equals the number of people who get back the correct coat.
- Let \(X_i \) be the random variable with \(X_i = 1 \) if person \(i \) gets the correct coat back, and \(X_i = 0 \) otherwise.
- It follows that \(X = X_1 + X_2 + ... + X_n \).
- Since any coat can be returned to any person, the probability that person \(i \) gets back the right coat is \(\frac{1}{n} \).
- So \(E(X_i) = 1 \times p(X_i=1) + 0 \times p(X_i=0) = \frac{1}{n} + 0 = \frac{1}{n} \).
- By the linearity of expectations, we have that
 \[
 E(X) = E(X_1) + E(X_2) + ... + E(X_n)
 \]
 \[
 = \frac{1}{n} + \frac{1}{n} + ... + \frac{1}{n}
 \]
 \[
 = 1
 \]
Definition: The ordered pair \((j,k)\) is called an inversion in a permutation if \(j < k\), but \(k\) precedes \(j\) in the permutation. For example, the permutation 3,1,2 contains two inversions. Namely (1,3) and (2,3).

Example: What is the expected number of inversions in a permutation of the first \(n\) positive integers?

Solution:
- Let \(X\) be a RV equal to the number of inversions in a permutation.
- Let \(I_{j,k}\) be a RV such that \(I_{j,k} = 1\) if \((j,k)\) is an inversion, and \(I_{j,k} = 0\) otherwise.
- It follows that \(E(X) = \sum_{1 \leq j < k \leq n} E(I_{j,k})\).
- **Note:** In any permutation, it is equally likely for \(j\) to precede \(k\) as it is for \(k\) to precede \(j\).
- As a result, we have that \(E(I_{j,k}) = 1/2\) for all \(j,k\).
- Since there \(C(n,2)\) pairs \(j,k\) with \(1 \leq j < k \leq n\) we have that
 - \(E(X) = \sum_{1 \leq j < k \leq n} E(I_{j,k}) = 1/2 \times C(n,2) = n(n-1)/4\).
Definition: Random variables X and Y on a sample space S are independent if $p(X(s)=r_1 \text{ and } Y(s)=r_2) = p(X(s)=r_1)p(Y(s)=r_2)$ for all real numbers r_1 and r_2.

Example: Let X_1 and X_2 be two random variables that take the values of two dice rolled. Are these two RVs independent?

Solution:
- $S = \{1, 2, 3, 4, 5, 6\}$
- Let $i, j \in S$
- Note that there are 36 equally likely possible outcomes for two dice
- So $p(X_1=i \text{ and } X_2=j) = 1/36$
- Note also that $p(X_1=i) = p(X_2=j) = 1/6$
- So $p(X_1=i)p(X_2=j) = 1/36$
- As a result, we can conclude that X_1 and X_2 are independent
Not all random variables are independent!

Example: Let X_1 and X_2 be random variables defined as before. Show that X_1 and $X = X_1 + X_2$ are not independent.

Solution:

- Note that $p(X_1=1 \text{ and } X=12) = 0$
 - Why? $X_1=1$ means that $X_1 + X_2 = 12$ is impossible!
- Note also that $p(X_1=1) = 1/6$
- Further, $p(X=12) = 1/36$
- This means that $p(X_1=1)p(X=12) \neq p(X_1=1 \text{ and } X=12)$
- By definition X_1 and X are not independent
Theorem: If X and Y are independent random variables on a sample space S, then $E(XY) = E(X)E(Y)$.

Note: This theorem only works if X and Y are independent!

For example, let X and Y be two random variables that count the number of heads and tails, respectively, when a coin is flipped twice. Clearly X and Y are not independent.

We know that $p(X=2) = p(Y=2) = 1/4$, $p(X=1) = p(Y=1) = 1/2$, and $p(X=0) = p(Y=0) = 1/4$. So, $E(X) = E(Y) = 1$.

Now, note that $XY=0$ if either two heads or two tails are flipped and $XY=1$ when one head and one tail come up. This gives us that $E(XY) = 1(1/2) + 0(1/2) = 1/2$.

However, $E(X)E(Y) = 1$, so $E(XY) \neq E(X)E(Y)$.
Problem 1: Consider a die in which the number 5 is two times as likely to be rolled as any other number. What is the expected value of this die?

Problem 2: Alice and Bob regularly play chess together. Historically, Alice wins 70% of the time. If Alice and Bob play 7 games of chess, how many games can Alice be expected to win?

Problem 3: A test contains 50 T/F questions, each worth two points, and 25 multiple choice questions, each worth four points. The probability that Alice answers and T/F question correctly is 0.9. The probability that Alice answers a multiple choice question correctly is 0.8. What is her expected score on the final?
Sometimes we need more information than the expected value can give us.

The expected value of a random variable doesn’t tell us the whole story...

\[p(X(s)=r) \]

\[X(s) \]
The variance of a random variable gives us information about how wide it is spread.

Definition: The variance of a random variable X on a sample space S is defined as:

$$V(X) = \sum_{s \in S} (X(s) - E(X))^2p(s)$$

- **Squared difference from expected value**
- **Weighted by probability of occurrence**

Definition: The standard deviation of a random variable X on a sample space S is defined as $\sqrt{V(S)}$.
Theorem: If X is a random variable on a sample space S, then $V(X) = E(X^2) - E(X)^2$.

Proof:

- $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$
- $= \sum_{s \in S} X(s)^2 p(s) - 2E(X)\sum_{s \in S} X(s)p(s) + E(X)^2\sum_{s \in S} p(s)$
- $= E(X^2) - 2E(X)E(X) + E(X)^2$
- $= E(X^2) - E(X)^2 \quad \square$
Variance of a Bernoulli Distribution

Example: What is the variance of random variable X with $X(t)=1$ if a Bernoulli trial is a success and $X(t)=0$ otherwise? Assume that the probability of success is p.

Solution:

- Note that X takes only the values 0 and 1
- Hence, $X(t) = X^2(t)$
- $V(X) = E(X^2) - E(X)^2$
- $= p - p^2$
- $= p(1-p)$
- $= pq$

This tells us that the variance of ANY Bernoulli distribution is pq!
Example: Two dice are rolled. What is the variance of the random variable $X((j,k)) = 2j$, where j is the number appearing on the first die and k is the number appearing on the second die.

Solution:

- $V(X) = E(X^2) - E(X)^2$
- Note that $p(X=k) = 1/6$ for $k = 2, 4, 6, 8, 10, 12$ and is 0 otherwise
- $E(X) = (2+4+6+8+10+12)/6 = 7$
- $E(X^2) = (2^2+4^2+6^2+8^2+10^2+12^2) = 182/3$
- So $V(X) = 182/3 - 49 = 35/3$
Problem: Find the variance of a random variable X where X is the number that comes up when a single die is rolled.
The variance of independent random variables

Theorem: Let X and Y be independent random variables on a sample space S. Then, $V(X+Y) = V(X) + V(Y)$. More generally, if X_1, X_2, \ldots, X_n are pairwise independent random variables on a sample space S, then $V(X_1+X_2+\ldots+X_n) = V(X_1) + V(X_2) + \ldots + V(X_n)$.

Proof (2 variable case):

- $V(X+Y) = E((X+Y)^2) - E(X+Y)^2$
- $= E(X^2 + 2XY + Y^2) - (E(X)+E(Y))^2$
- $= E(X^2) + 2E(XY) + E(Y^2) - E(X)^2 - 2E(X)E(Y) - E(Y)^2$
- $= [E(X^2) - E(X)^2] + [E(Y^2)-E(Y)^2] + 2E(X)E(Y) - 2E(X)E(Y)$
- $= [E(X^2) - E(X)^2] + [E(Y^2)-E(Y)^2]$
- $= V(X) + V(Y) \quad \Box$

Since X and Y are independent...
Example: The X be a random variable whose value is the sum that appears when two dice are rolled. What is V(X)?

Solution:
- Let X_1 and X_2 be random variables taking the value that appears on the first and second die, respectively
- So $X = X_1 + X_2$
- Note that X_1 and X_2 are independent
- $V(X) = V(X_1 + X_2)$
- $V(X_1) + V(X_2) = \frac{35}{12} + \frac{35}{12} = \frac{35}{6}$
Problem: What is the variance of the number of successes when \(n \) independent Bernoulli trials are performed, where \(p \) is the probability of success for each trial? Hint: Let \(X_i((t_1, ..., t_n)) \) be a random variable such that \(X_i = 1 \) if \(t_i \) was a success and \(X_i = 0 \) otherwise.
Final Thoughts

- Analyzing the expected value of a random variable allows us to answer a range of interesting questions.

- The variance of a random variable tells us about the spread of values that the random variable can take.