
Real-Time Heuristic Search: First 

Richard E. Korf 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, Ca. 90024 

Abstract 

Existing heuristic search algorithms are not ap- 
plicable to real-time applications because they can- 
not commit to a move before an entire solution is 
found. We present a special case of minimax looka- 
head search to handle this problem, and an analog 
of alpha-beta pruning that significantly improves the 
efficiency of the algorithm. In addition, we present 
a new algorithm, called Real-Time-A*, for searching 
when actions must actually be executed, as opposed 
to merely simulated. Finally, we examine the nature 
of the tradeoff between computation and execution 
cost. 

EIeuristic search is a fundamental problem-solving method 

in artificial intelligence. l?or most AI problems, the se- 
quence of steps required for solution is not known a pri- 

ori but must be determined by a systematic trial-and-error 

exploration of alternatives. All that is required to formu- 
late a search problem is a set of states, a set of operators 

that map states to states, an initial state, and a set of goal 
states. The task typically is to find a lowest cost sequence 

of operators that map the initial state to a goal state. The 
complexity of search algorithms is greatly reduced by the 

use of a heuristic evaluation function, often without sacri- 
ficing solution optima&y. A heuristic is a function that is 
relatively cheap to compute and estimates the cost of the 

cheapest path from a given state to a goal state. 

Common examples in the AI literature of search prob- 
lems are the Eight Puzzle and its larger relative the Fifteen 
Puzzle. The Eight Puzzle consists of a 3x3 square frame 

containing 8 numbered square tiles and an empty position 
called the “blank”. The legal operators slide any tile hori- 
zontally or vertically adjacent to the blank into the blank 
position. The task is to rearrange the tiles from some ran- 

dom initial configuration into a particular desired goal con- 

figuration. A common heuristic function for this problem 
is called Manhattan Distance. It is computed by count- 

ing, for each tile not ‘in its goal position, the number of 

moves along the grid it is away from its goal position, and 

summing these values over all tiles, excluding the blank. 

A real-world example is the task of autonomous nav- 

igation in a network of roads, or arbitrary terrain, from 

an initial location to a desired goal location. The problem 

is typically to find a shorted path between the initial and 
goal states. A typical heuristic evaluation function for this 
problem is the air-line distance from a given location to the 
goal location. 

The best known heuristic search algorithm is A*[l]. A* is a 
best-first search algorithm where the merit of a node, f(n), 
is the sum of the actual cost in reaching that node, g(n), 

and the estimated cost of reaching the solution from that 

node, h(n). A* has the property that it will always find 

an optimal solution to a problem if the heuristic function 

is admissible, i.e. never overestimates the actual cost of 

solution. 

Iterative-Deepening-A*( IDA*)[2] is a modification of A* 
that reduces its space complexity in practice from exponen- 

tial to linear. IDA* performs a series of depth-first searches, 

in which a branch is cutoff when the cost of its frontier 

node, fb-4 = sW + O-4, exceeds a cutoff threshold. The 

threshold starts at the heuristic estimate of the initial state, 
and is increased each iteration to the minimum value that 

exceeded the previous threshold, until a solution is found. 

IDA* has the same prcperty as A* with respect to solution 

optimality, and expands the same number of nodes, asymp- 

totically, as A” on an exponential tree, but uses only linear 

space. 

The drawback of both A* and IDA* is that they take 

exponential time to run in practice. This is an unavoid- 
able cost of obtaining optimal solutions. As observed by 
Simon[4], however, it is relatively rare that optimal solu- 
tions are actually required, but rather near-optimal or “sat- 
isficing” solutions are usually perfectly acceptable for most 
real-world problems. 

A related drawback of both A* and IDA* is that they 
must search all the way to a solution before making a com- 
mitment to even the first move in the solution. The reason 

is that an optimal first move cannot be guaranteed until the 

entire solution is found and shown to be at least as good 

as any other solution. As a result, A* and IDA* are run 

to completion in a planning or simulation phase before the 

first move of the resulting solution is executed in the real 
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world. This is a serious limitation of these algorithms with 

respect to real-time applications. 

3 Real-Time Problems 

In this section we examine several important characteristics 

of real-time problems that must be taken into consideration 

by any real-time heuristic search algorithm. 
The first characteristic is that in real problems the prob- 

lem solver must face a limited search horizon. This is due 
primarily to computational and/or informational limita- 
tions. For example, due to the combinatorial explosion of 
the Fifteen Puzzle, finding optimal solutions using IDA* 

with Manhattan Distance on a DEC20 required an aver- 
age of over five hours per problem instance[2]. Any larger 

puzzle would be intractable. In the case of the navigation 

problem without the benefit of completely detailed maps, 
the search horizon (literalIy, in this case) is due to the infor- 

mational limit of how far the vision system can see ahead. 

Even with the aid of accurate maps the level of detail is 
a limitation. This gives rise to a “fuzzy horizon” where 

the level of detail of the terrain knowledge is a decreasing 
function of the distance from the problem solver. 

A related characteristic is that in a real-time setting, 

actions must be committed before their ultimate conse- 

quences are known. For example, a chess tournament re- 

quires that moves be made within a certain time limit. In 
the case of navigation, the vehicle must be moved in order 

to extend the search horizon in the direction chosen. 
A final important characteristic is that often the cost of 

action and the cost of planning can be expressed in com- 

mon terms, giving rise to a tradeoff between the two. For 
example, if the goal of the Fifteen Puzzle were to solve it in 

the shortest possible time, as opposed the smallest number 

of moves, and we quantified the time to actually make a 
physical move relative to the time required to simulate a 

move in the machine, then in principle we could find al- 

gorithms that minimized total solution time by balancing 
“thinking” time and “action” time. 

4 Minimin Lookahead Search 

In this section we present a simple algorithm for real-time 
heuristic search in single-agent problems that takes the 
above characteristics into account. It amounts to a spe- 
cial case of the minimax algorithm for two-player games[3]. 
This should not be surprising since two-player games share 
the real-time characteristics of limited search horizon and 
commitment to moves before their ultimate outcome can 
be known. At .first we will assume that all operators have 
the-same cost. 

The algorithm is to search forward from the current 

state to a fixed depth determined by the computational or 

informational resources available for a single move, and ap- 
ply the heuristic evaluation function to the nodes at the 

search frontier. Whereas in a two-player game these val- 
ues would then be minimaxed up the tree to account for 

alternate moves among the players, in the single-agent set- 
ting, the backed-up value of each node is the minimum of 

the values of its children, since the single agent has control 
over all moves. Once the backed-up values of the children 
of the current state are determined, a single move is made 

in the direction of the best child, and the entire process is 

repeated. The reason for not moving directly to the fron- 

tier node with the minimum value is to follow a strategy of 

least commitment, under the assumption that after com- 
mitting the first move, additional information from an ex- 

panded search frontier may result in a different choice for 
the second move than was indicated by the first search. We 
call this algorithm minimin search in contrast to minimax 
searchl. 

Note that the search proceeds in two quite different, but 

interleaved modes. The minimin lookahead search occurs 

in a simulation mode, where the postulated moves are not 

actually executed, but merely simulated in the machine. 
After one complete lookahead search, the best move found 

is actually executed in the real world by the problem solver. 

This is followed by another lookahead simulation from the 
new current state, and another actual move, etc. 

In the more general case where the operators have non- 

uniform cost, we must take into account the cost of a path 

so far in addition to the heuristic estimate of the remain- 

ing cost. To do this we adopt the A* cost function of 

f(n) = g(n) + h(n). The algorithm then looks forward a 
fixed number of moves and backs up the minimum f value 

of each frontier node. An alternative scheme to searching 
forward a fixed number of moves would be to search for- 

ward to a fixed g(n) cost. We adopt the former algorithm 

under the assumption that in the planning phase the com- 
putational cost is a function of the number of moves rather 

than the actual execution costs of the moves. 

To ensure termination, care must be taken to prevent 
infinite loops in the path actually traversed by the problem 

solver. This is accomplished by maintaining a CLOSED 

list of those states that have actually been visited by an 

actual move of the problem solver, and an OPEN stack 
of those nodes on the current path from the start state. 
Moves to CLOSED states are ruled out, and if all possible 
moves from a given state lead to CLOSED states, then the 
OPEN stack is used to backtrack until a move is available 
to a new state. This conservative strategy prohibits the 
algorithm from undoing a previous move, except when it 
encounters a dead end. This restriction will be removed 

later in the paper. 

5 Alpha Pruning 

A natural question to ask at this point is whether every 

frontier node must be examined to find the one with min- 

iThis name is due to Bruce Abramson 
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imum cost, or does there exist an analog of alpha-beta 

pruning that would allow the same decisions to be made 

while exploring substantially fewer nodes. If our algorithm 
uses only frontier node evaluations, then a simple adversary 
argument establishes that no such pruning algorithm can 
exist, since to determine the minimum cost frontier node 

requires examining every one. 
However, if we allow heuristic evaluations of interior 

nodes, then substantial pruning is possible if the cost func- 

tion is monotonic. A cost function f(n) is monotonic if it 

never decreases along a path away from the initial state. 
Monotonicity of f(n) = g(n) + h(n) is equivalent to con- 

sistency of h(n), or obeying the triangle inequality, a prop- 

erty satisfied by most naturally occurring heuristic func- 
tions, including Manhattan Distance and air-line distance. 

Furthermore, if a heuristic function is admissible but not 
monotonic, then an admissible, monotonic function f(n) 

can trivially be constructed by taking its maximum value 

along the path. 

A monotonic f function allows us to apply branch-and- 

bound to significantly decrease the number of nodes exam- 

ined without effecting the decisions made. The algorithm, 

which we call alppha pruning by analogy to alpha-beta prun- 

ing, is as follows: In the course of generating the tree, main- 

tain in a variable called Q the lowest f value of any node 

encountered so far on the search horizon. As each interior 

node is generated, compute its f value and cut off the cor- 

responding branch when its f value equals (Y. The reason 

this can be done is that since the function is monotonic, 
the f values of the frontier nodes descending from that 
node can only be greater than or equal to the cost of that 
node, and hence cannot effect the move made since we only 
move toward the frontier node with the minimum value. As 

each frontier node is generated, compute its f value as well 
and if it is less than o, replace cx with this lower value and 

continue the search. 

In experiments with the Fifteen Puzzle using the Man- 
hattan Distance evaluation function, alpha-pruning reduces 

the effective branching factor by more than than the square 
root of the brute-force branching factor (from 2.13 to 1.41). 
This has the effect of more than doubling the search horizon 

reachable with the same amount of computation. For ex- 

ample, if the computational resources allow a million nodes 
to be examined in the course of a move, the brute force 

algorithm can search to a depth of 18 moves while alpha 

pruning allows the search to proceed more than twice as 
deep (40 moves). 

As in alpha-beta pruning, the efficiency of alpha pruning 

can be improved by node ordering. The idea is to order the 

successors of each interior node in increasing order of their 

f values, hoping to find low cost frontier nodes early and 
hence prune more branches sooner. 

Although the two algorithms were developed separately, 

minimin with alpha pruning is very similar to a single iter- 
ation of iterative-deepening-A*. The only difference is that 
in alpha pruning the cutoff threshold is dynamically deter- 

mined and adjusted by the minimum value of the frontier 

nodes, as opposed to being static and set in advance by the 
previous iteration in IDA*. 

SO far, we have assumed that once an action is committed, 
it is not reversed unless a dead end is encountered, with the 

primary motivation being the prevention of infinite loops by 
the problem solver. We now address the question of how 
to incorporate backtracking when it appears favorable, as 
opposed to dead-end backtracking, while still preventing 
infinite loops. The basic idea is quite simple. One should 

backtrack to a previously visited state when the estimate of 

solving the problem from that state plus the cost of back- 

tracking to that state is less than the estimated cost of going 
forward from the current state. Real-Time-A*(RTA”) is an 

efficient algorithm for implementing this basic strategy. 

While the minimin lookahead algorithm is an algorithm 

for controlling the simulation phase of the search, RTA* 

is an algorithm for controlling the execution phase of the 

search. As such, it is’ independent of the simulation al- 

gorithm chosen. For simplicity of exposition, we will as- 

sume that the minimin lookahead algorithm is encapsulated 

within the computation of h(n), and hence becomes simply 

a more accurate and computationally more expensive TNay 

of computing h(n). 
In RTA*, the merit of a node n is f(n) = g(n) + h(n), 

as in A*. However, unlike A*, the interpretation of g(n) 

in RTA* is the actual distance of node n from the current 
state of the problem solver, rather than from the original 
initial state. RTA* is simply a best-first search given this 

slightly different cost function. In principle, it could be 
implemented by storing on an OPEN list the h. values of a3l 

previously visited states, and every time a move is made, 
updating the g values of all states on OPEN to accurately 

reflect their actual distance from the new current state. 

Then at each move cycle, the problem solver selects next 

the state with the minimum g + h value, moves to it, and 

again updates the g values of all nodes on OPEN. 
The drawbacks of this naive implementation are: 1) the 

time to make a move is linear in the size of the OPEN list, 

2) it is not clear exactly how to update the g values, and 

3) it is not clear how to find the path to the next destina- 
tion node chosen from OPEN. Interestingly, these problems 
can be solved in constant time per move using only local 
information in the graph. The idea is as follows: from a 

given current state, the neighboring states are generated, 

the heuristic function, augmented by lookahead search, is 
applied to each, and then the cost of the edge to each neigh- 

boring state is added to this value, resulting in an f value 

for each neighbor of the current state. The node with the 
minimum f* value is chosen for the new current state and 

a move to that state is executed. At the same time, the 

next best f value is stored at the previous current state. 
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This represents the estimated h cost of solving the prob- 

lem by returning to this state. Next, the new neighbors 

of the new current state are generated, their h values are 

computed, and the edge costs of all the neighbors of the 
new current state, including the previous current state, are 

added to their h values, resulting in a set of f values for all 
the neighboring ktates. Again, the node with the smallest 

value is chosen to move to, and the second best value is 

stored as the h value of the old current state. 
Note that RTA* does not require separate OPEN and 

CLOSED lists, but a single list of previously evaluated 
nodes suffices. The size of this list is linear in the number 
of moves actually made, since the lookahead search saves 

only the value of its root node. Furthermore, the running 
time is also linear in the number of moves made. The rea- 
son for this is that even though the lookahead requires time 
that is exponential in the search depth, the search depth is 

bounded by a constant. 
Interestingly, one can construct examples to show that 

RTA* could backtrack an arbitrary number of times over 

the same terrain. For example, consider the simple straight- 

hne graph in Figure 1, where the initial state is node a, 

all the edges have unit cost, and the values below each 

node represent the heuristic estimates of those nodes. Since 

lookahead only makes the example more complicated, we 

will assume that no lookahead is done to compute the h 
values. Starting at node a, f(b) = g(b) + h(b) = 1 + 1 = 2, 
while f(c) = g(c) + h(c) = 1 + 2 = 3. Therefore, the prob- 

lem solver moves to node b, and leaves behind at node a the 
information that h(a) = 3. Next, node d is evaluated with 

the result that f(d) = g(d) + h(d) = 1+ 4 = 5, and node a 

receives the value f(u) = g(u)+ h(u) = 1+3 = 4. Thus, the 

problem solver moves back to node a, and leaves h(b) = 5 
behind at node b. At this point, f(b) = g(b) + h(b) = 
1+5 = 6, and f(c) = g(c) + h(c) = 1 + 2 = 3, causing 
the problem solver to move to node c, and leave h(u) = 6 
behind at node a. The reader is urged to continue the ex- 
ample to see that the problem solver continues to go back 
and forth, until a goal is reached. The reason it is not an 
infinite loop is that each time it changes direction, it goes 
one step further than the previous time, and gathers more 

information about the space. This seemingly irrational be- 
havior is produced by rational behavior in the presence of 

a limited search horizon, and a pathological space. 
Unfortunately, the capability of RTA” to backtrack is 

not exercised by the Fifteen Puzzle with Manhattan Dis- 
tance as the evaluation function. The reason is that since 
Manhattan Distance only changes by one in a single move, 
it can be shown that RTA* will only backtrack at dead 
ends. 

11 1 2 7 IL 

F 0 8 C 

Figure 1: RTA* Example 

E 

‘i’ Solution Quality 

In addition to efficiency of the algorithm, the length of so- 
lutions generated by minimin lookahead search is of cen- 

tral concern. The most natural expectation is that solution 

length will decrease with increasing search depth. In exper- 

iments with the Fifteen Puzzle using Manhattan Distance, 
this turned out to be generally true, but not uniformly. 

One thousand solvable initial states of the Fifteen Puz- 

zle were randomly generated. For each initial state, the 
minimin algorithm with alpha pruning was run with search 

depths ranging from 1 to 30 moves. Moves were made until 

a solution was found, or a thousand moves had been made, 

in order to limit overly long solutions, and the resulting 
number of moves made was recorded. Figure 2 shows a 
graph of the average solution length over all thousand prob- 

lem instances versus the depth of the search horizon. The 
line at the bottom represents 53 moves which is the aver- 

age optimal solution length for a different set of 100 initial 
states. The optimal solution lengths were computed using 
IDA*, which required several weeks of CPU time to solve 

the hundred initial states[2]. 

The overall shape of the curve confirms the intuition 
that increasing the search horizon decreases the resulting 
solution cost. At depth 25, the average solution length 

is only a factor of two greater than the average optimal 
solution length. This is achieved by searching only about 

6000 nodes per move, or a total of 600,000 nodes for the 

entire solution. This is accomplished in about one minute 

of CPU time on a Hewlett-Packard HP-9000 workstation. 

However, at depths 3, 10, and 11, increasing the search 

horizon resulted in a slight increase in the average solution 

length. This phenomenon was first identified in the case 

of two-player games and was termed pathology by Dana 
Nau[5]. He found that for certain artificial games, increas- 
ing the search depth resulted in consistently poorer play in 
some cases. Until now. pathology has never been observed 
in a “real” game. 

While the pathological effect is relatively small when 
averaged over a large number of problem instances, in in- 
dividual problem instances the phenomenon is much more 
prominent. In many cases, increasing the search depth by 
one move resulted in solutions that were hundreds of moves 

longer. 
In an attempt to understand this phenomenon, we per- 

formed some additional experiments on decision quakity as 

opposed to solution quality. The difference is that a so- 
lution is composed of a large number of individual move 

decisions. While solution quality is measured by the total 

length of the solution, decision quality is measured by the 

percentage of time that an optimal move is chosen. Since 
the optimal moves from a state must be known to deter- 

mine decision quality, the smaller and more tractable Eight 

Puzzle was chosen for these experiments, with the same 

Manhattan Distance evaluation function. 
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Figure 2: Solution Length vs. Search Horizon 

In this case, ten thousand solvable initial states were 

randomly generated. Instead of examining the entire so- 

lution that would be generated by the minimin algorithm, 

only the first move from these states was considered. In 
each case, the percentage of time that an optimal first move 

was chosen was recorded over all initial states for each dif- 

ferent search horizon. The search horizons ranged from 
one move to a horizon one less than the optimal solution 
length for a given problem. Figure 3 shows a graph of er- 
ror percentage versus search horizon. As the search depth 
increases, the percentage of optimal moves also increases 
monotonically. Thus, pathology does not show up in terms 
of decision quality. 

If decision quality smoothly improves with increasing 

search depth, why is solution quality so erratic? One expla- 

nation is that while the probability of mistakes decreases, 
the cost of any individual mistake can be quite high in 
terms of overall solution cost. This is particularly true in 

these experiments, where backtracking only occurred when 
a dead end was encountered. 

5 IO 1r 20 2.r 

Search Horizon 

Figure 3: Decision Quality vs. Search Horizon 

Another source of error is ties among alternatives. In 
a situation where moves must be committed based on un- 

certain information, ties should not be broken arbitrarily 

More generally, when dealing with inexact heuristic esti- 

mates, two values that are closer together than the accu- 

racy of the function should be considered virtual ties, and 
dealt with as if they were indistinguishable. 

In order to deal with this problem, ties and virtual ties 

must first be recognized. This means that the alpha prun- 

ing algorithm must be changed to prune a branch only when 

its value exceeds the previous best by the error factor. This 
will increase the number of nodes that must be generated. 

Once a tie is recognized, it must be broken. The most 

reasonable way to accomplish this is to perform a deeper 

secondary search on the candidates until the tie is bro- 

ken. However, this secondary search must also have a depth 

limit. If the secondary search reaches its depth limit with- 

out breaking the tie, a virtual tie may as well be resolved 

in favor of the lower cost move. 

Viewing a heuristic evaluation function with lookahead search 

as a single, more accurate heuristic function generates a 
whole family of heuristic functions, one corresponding to 
each search depth. The members of this family vary in 
computational complexity and accuracy, with the more ex- 
pensive functions generally being more accurate. 

The choice of which evaluation function to use amounts 
to a tradeoff between the cost of performing the search and 
the cost of executing the resulting solution. The minimum 
total time depends on the relative costs of computation and 
execution, but a reasonable model is that they are linearly 
related. In other words, we assume that the cost of applying 
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an operator in the real world is a fixed multiple of the cost 

of applying an operator in the simulation. 
Figure 4 shows the same data as Figure 2, but with a 

horizontal axis that is linear in the number of nodes gener- 

ated per move as opposed to linear in the search depth. 
The curve shows that the computation-execution trade- 

off is initially quite favorable in the sense that small in- 

creases in computation buy large reductions in solution 

cost. However, a point of diminishing returns is rapidly 
reached, where further significant reductions in solution 

cost require exponentially more computation. The effect 

is even greater than it appears, since overly long solutions 

were arbitrarily terminated at 1000 moves. Different rel- 
ative costs of computation and execution will change the 

relative scales of the 

L-shape of the curve. 

two axes without altering the basic 

Average Optimal Solution 

t 
-- ----- --------- 

1 b 
100 200 300 'too 600 600 

Nodes per Move 

Figure 4: Execution Time vs. Computation Time 

9 Conclusions 

Existing single-agent heuristic search algorithms cannot be 

used in real-time applications, due to their computational 
cost and the fact that they cannot commit to an action 

before its ultimate outcome is known. Minimin lookahead 

search is an effective algorithm for such problems. Further- 

more, alpha pruning drastically improves the efficiency of 

the algorithm without effecting the decisions made. In ad- 
dition, Real-Time-A* efficiently solves the problem of when 

to abandoned the current path in favor of a more promis- 

ing one. Extensive simulations show that while increasing 

search depth usually increases solution quality, occasionally 
the opposite is true. To avoid the detrimental effect of vir- 

tual ties on decision quality, additional search is required. 

Finally, lookahead search can be characterized as generat- 

ing a family of heuristic functions that vary in accuracy and 
computational complexity. The tradeoff between solution 

quality and computational cost is initially quite favorable 
but rapidly reaches a point of diminishing returns. 
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