Review

- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\mathrm{R}=\mathrm{Is}$ it raining?
- $\mathrm{D}=$ How long will it take to drive to work?
- L = Where am I?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
- R in $\{$ true, false (sometimes write as $\{+r, \neg r\}$)
- D in [0, ∞)
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Unobserved random variables have distributions

$P(T)$		$P(W)$	
T	P	W	P
warm	0.5	sun	0.6
cold	0.5	rain	0.1
		fog	0.3
		meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$
P(W=\text { rain })=0.1 \quad P(\text { rain })=0.1
$$

- Must have: $\forall x P(x) \geq 0$

$$
\sum_{x} P(x)=1
$$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
\begin{aligned}
P\left(x_{1}, x_{2}, \ldots x_{n}\right) & \geq 0 \\
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right) & =1
\end{aligned}
$$

$P(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- For all but the smallest distributions, impractical to write out

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact
- Constraint satisfaction probs:
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

T	W	P
hot	sun	T
hot	rain	F
cold	sun	F
cold	rain	T

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like $\mathrm{P}(\mathrm{T}=$ hot $)$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$P(T, W)$				$P(T)$	
				T	P
T	W	P	$P(t)=\sum_{s} P(t, s)$	hot	0.5
hot	sun	0.4		cold	0.5
hot	rain	0.1		$P(W)$	
cold	sun	0.2	$\overrightarrow{P(s)=\sum_{t} P(t, s)}$	W	P
cold	rain	0.3		sun	0.6
				rain	0.4

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$$
P(T, W)
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

$\left\{\right.$| $P(W \mid T=$ hot $)$ | |
| :---: | :---: |
| W P
 sun 0.8
 rain 0.2
 $P(W \mid T=$ cold $)$
 $\begin{array}{\|c\|c\|}\hline \mathrm{W} & \mathrm{P} \\ \hline \text { sun } & 0.4 \\ \hline \text { rain } & 0.6 \\ \hline\end{array}$ $. \begin{array}{l}\end{array}$ | |

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

- A trick to get a whole conditional distribution at once:
- Select the joint probabilities matching the evidence
- Normalize the selection (make it sum to one)
$P(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

	$P(T, r)$				$P(T \mid r)$	
	T	R	P		T	P
Select	hot	rain	0.1	Normalize	hot	0.25
	cold	rain	0.3		cold	0.75

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P (on time \mid no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P (on time | no accidents, 5 a.m.) $=0.95$
- $\quad \mathrm{P}$ (on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables: $E_{1} \ldots E_{k}=e_{1} \ldots e_{k}$
- Query* variable: Q
- Hidden variables: $H_{1} \ldots H_{r}$
$X_{1}, X_{2}, \ldots X_{n}$
All variables
- We want: $P\left(Q \mid e_{1} \ldots e_{k}\right)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} \underbrace{P\left(Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}\right)}_{X_{1}, X_{2}, \ldots X_{n}}
$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
- Worst-case time complexity O(dn)
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

$$
P(x, y)=P(x \mid y) P(y)
$$

- Example:
$P(D \mid W)$
$P(D \mid W)$

D	W	P
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

$P(W)$

R	P
sun	0.8
rain	0.2

$P(D, W)$

D	W	P
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.036

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems
- In the running for most important AI equation!

Independence

- Two variables are independent in a joint distribution if:

$$
\begin{gathered}
P(X, Y)=P(X) P(Y) \\
\forall x, y P(x, y)=P(x) P(y)
\end{gathered}
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

