Outline

Natural Language for Communication

Chapter 23.1-23.3

Communication

"Classical" view (pre-1953):
language consists of sentences that are true/false (cf. logic)
"Modern" view (post-1953):
language is a form of action
Wittgenstein (1953) Philosophical Investigations
Austin (1962) How to Do Things with Words
Searle (1969) Speech Acts
Why?
To change the actions of other agents
Need a deeper understanindg of language
\diamond Phrase Structure Grammars
\diamond Syntactic Analysis (Parsing)
\diamond Augmented Grammars and Semantic Interpretation
\diamond Problems

Address Ch 22 data sparsity through generalization (categories)
Vervet monkeys, antelopes etc. use isolated symbols for sentences
\Rightarrow restricted set of communicable propositions, no generative capacity
(Chomsky (1957): Syntactic Structures)
Grammar specifies the compositional structure of complex messages
e.g., speech (linear), text (linear), music (two-dimensional)

A formal language is a set of strings of terminal symbols
Each string in the language can be analyzed/generated by the grammar
The grammar is a set of rewrite rules, e.g.,

$$
\begin{aligned}
& S \rightarrow N P V P \\
& \text { Article } \rightarrow \text { the }|\boldsymbol{a}| \text { an } \mid \ldots
\end{aligned}
$$

Here S is the sentence symbol, $N P$ and $V P$ are nonterminals

Grammar types

Regular: nonterminal \rightarrow terminal $[$ nonterminal $]$

$$
\begin{aligned}
& S \rightarrow \boldsymbol{a} S \\
& S \rightarrow \Lambda
\end{aligned}
$$

Context-free: nonterminal \rightarrow anything

$$
S \rightarrow \boldsymbol{a} S \boldsymbol{b}
$$

Context-sensitive: more nonterminals on right-hand side

$$
A S B \rightarrow A A \boldsymbol{a} B B
$$

Recursively enumerable: no constraints
Related to Post systems and Kleene systems of rewrite rules
Natural languages probably context-free, parsable in real time!

Wumpus lexicon

```
        Noun }->\mathrm{ stench | breeze| glitter | nothing
        | wumpus | pit| pits | gold| east|...
        Verb ->is| see| smell| shoot| feel| stinks
            |go| grab| carry| kill| turn|...
Adjective }->\mathrm{ right | left| east| south | back | smelly|..
    Adverb }->\mathrm{ here | there| nearby | ahead
        | right| left| east| south| back|...
    Pronoun }->\mathrm{ me | you | I| it | ...
        Name -> John | Mary | Boston | UCB|PAJC| ..
    Article }->\mathrm{ the | a| an |...
Preposition -> to | in | on | near | ...
Conjunction }->\mathrm{ and | or | but | ...
Digit }->0|1|2| 3| 4| 5| 6| 7| 8| 9
```

Divided into closed and open classes

Formal language L_{1} may differ from natural language L_{2}

Adjusting L_{1} to agree with L_{2} is a learning problem!

* the gold grab the wumpus
* I smell the wumpus the gold

I give the wumpus the gold

* I donate the wumpus the gold

Intersubjective agreement somewhat reliable, independent of semantics! Real grammars 10-500 pages, insufficient even for "proper" English

Parse trees

Exhibit the grammatical structure of a sentence

```
Noun }->\mathrm{ stench(.05)| breeze(.10)...
S->NP VP (.9) I + feel a breeze
    | Conjunction S (.1) I feel a breeze + and +I smell a wumpus
```

- Sum of the probabilities for each category is 1

Parse trees

Exhibit the grammatical structure of a sentence

I
shoot
the
wumpus

Exhibit the grammatical structure of a sentence

Exhibit the grammatical structure of a sentence

Exhibit the grammatical structure of a sentence

Parse trees - probabilistic
Each interior node is labeled with its probability.
The probability of the tree as a whole is .9 * . 25 * . 05 * . 15 * . 4 * . 1

Syntax in NLP

Most view syntactic structure as an essential step towards meaning; "Mary hit John" $=$ "John hit Mary"
"And since I was not informed-as a matter of fact, since I did not know that there were excess funds until we, ourselves, in that checkup after the whole thing blew up, and that was, if you'll remember, that was the incident in which the attorney general came to me and told me that he had seen a memo that indicated that there were no more funds."

Syntax in NLP

Most view syntactic structure as an essential step towards meaning;
"Mary hit John" $=$ "John hit Mary"
"And since I was not informed-as a matter of fact, since I did not know that there were excess funds until we, ourselves, in that checkup after the whole thing blew up, and that was, if you'll remember, that was the incident in which the attorney general came to me and told me that he had seen a memo that indicated that there were no more funds."

Context-free parsing

Bottom-up parsing works by replacing any substring that matches RHS of a rule with the rule's LHS

Efficient algorithms (e.g., chart parsing (Ch. 23.2) - normal forms, dynamic programming again!)

Learning probabilities for PCFGs - treebanks

Logical grammars

BNF notation for grammars too restrictive:

- difficult to add "side conditions" (number agreement, etc.)
- difficult to connect syntax to semantics

Idea: express grammar rules as logic

$$
\begin{aligned}
& X \rightarrow Y Z \quad \text { becomes } Y\left(s_{1}\right) \wedge Z\left(s_{2}\right) \Rightarrow X\left(\operatorname{Append}\left(s_{1}, s_{2}\right)\right) \\
& X \rightarrow \text { word becomes } X([\text { "word"]) } \\
& X \rightarrow Y \mid Z \text { becomes } Y(s) \Rightarrow X(s) \quad Z(s) \Rightarrow X(s)
\end{aligned}
$$

Here, $X(s)$ means that string s can be interpreted as an X

Logical grammars contd.

Now it's easy to augment the rules

$$
\begin{gathered}
N P\left(s_{1}\right) \wedge N \operatorname{Number}\left(s_{1}, n\right) \wedge V P\left(s_{2}\right) \wedge N \operatorname{Nmber}\left(s_{2}, n\right) \\
\Rightarrow S\left(\operatorname{Append}\left(s_{1}, s_{2}\right)\right)
\end{gathered}
$$

Parsing is reduced to logical inference:
$\operatorname{Ask}\left(K B, S\left(\left[{ }^{\prime} I^{\prime \prime}{ }^{\prime} a^{\prime \prime} " a{ }^{\prime \prime}\right.\right.\right.$ "wumpus"]))
(Can add extra arguments to return the parse structure, semantics)
Generation simply requires a query with uninstantiated variables:
$\operatorname{Ask}(K B, S(x))$

Real language

Real human languages provide many problems for NLP:
\diamond ambiguity
\diamond anaphora
\diamond indexicality
\diamond vagueness
\diamond noncompositionality
\diamond discourse structure
\diamond metonymy
\diamond metaphor

Augmented grammars contd.

Lexicalized PCFGs

- VP(v) -> Verb(v) NP(n) [P1(v,n)]
- $\mathrm{VP}(\mathrm{v})$-> $\operatorname{Verb}(\mathrm{v})$ [P2(v)]
- ...
- Noun(banana) -> banana [pn]

Ambiguity
Squad helps dog bite victim
Squad helps dog bite victim
Helicopter powered by human flies

Ambiguity
\square
Ambiguity
Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
Ambiguity

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
\square
Ambiguity
Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon
a fork
Ambiguity

[^0]
Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon
a fork
a friend
Ambiguity can be lexical (polysemy), syntactic, semantic, referential

Indexicality

Indexical sentences refer to utterance situation (place, time, S/H, etc.)
I am over here
Why did you do that?

Anaphora

Using pronouns to refer back to entities already introduced in the text After Mary proposed to John, they found a preacher and got married. For the honeymoon, they went to Hawaii

Anaphora

Using pronouns to refer back to entities already introduced in the text After Mary proposed to John, they found a preacher and got married.

Anaphora

Using pronouns to refer back to entities already introduced in the text After Mary proposed to John, they found a preacher and got married.

For the honeymoon, they went to Hawaii
Mary saw a ring through the window and asked John for it
Anaphora

Using pronouns to refer back to entities already introduced in the text After Mary proposed to John, they found a preacher and got married.

For the honeymoon, they went to Hawaii
Mary saw a ring through the window and asked John for it
Mary threw a rock at the window and broke it
"Non-literal" usage of words and phrases, often systematic:
I've tried killing the process but it won't die. Its parent keeps it alive.

Using one noun phrase to stand for another
I've read Shakespeare
Chrysler announded record profits
The ham sandwich on Table 4 wants another beer
basketball shoes

Noncompositionality
basketball shoes baby shoes

Noncompositionality
basketball shoes
baby shoes
alligator shoes

Noncompositionality
Noncompositionality
basketball shoes
baby shoes
alligator shoes designer shoes
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
Noncompositionality
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book

Noncompositionality
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
Noncompositionality
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
| Noncompositionality
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring

[^0]: salad
 abandon
 a fork
 a friend

