Bayesian networks

Chapter 14
Section 1-2

Outline

- Syntax
- Semantics

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(\mathrm{X}_{\mathrm{i}} \mid \text { Parents }\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example: Coin Flips

- N independent coin flips

- ••

- No interactions between variables: absolute independence

Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence
- Model 2: rain causes traffic
- Why is an agent using model 2 better?

Example: Traffic

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.

Slightly different notation

\mathbf{B}	$\mathrm{P}(\mathrm{B})$
+b	0.001
-b	0.999

E	$P(E)$
$+e$	0.002
$\neg e$	0.998

B	E	A	$P(A \mid B, E)$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

non?

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just 1-p)

- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)
- BNs: Huge space savings
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Semantics

The full joint distribution is defined as the product of the local conditional distributions:
n

$$
\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

e.g., $\boldsymbol{P}(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$
$=\boldsymbol{P}(j \mid a) \boldsymbol{P}(m \mid a) \boldsymbol{P}(a \mid \neg b, \neg e) \boldsymbol{P}(\neg b) \boldsymbol{P}(\neg e)$

To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure

Constructing Bayesian networks

- 1. Choose an ordering of variables X_{1}, \ldots, X_{n}
- 2. For $i=1$ to n
- add X_{i} to the network
- select parents from X_{i}, \ldots, X_{i-1} such that

$$
\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots X_{i-1}\right)
$$

This choice of parents guarantees:

$$
\begin{aligned}
\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right) & =\pi_{i=1}{ }^{n} \boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \text { (chain rule) } \\
& =\pi_{i=1} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right) \quad\right. \text { (by construction) }
\end{aligned}
$$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology only guaranteed to encode conditional independence

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

$P(T, R)$

r	t	$3 / 16$
r	$\neg \mathrm{t}$	$1 / 16$
$\neg r$	t	$6 / 16$
$\neg r$	$\neg \mathrm{t}$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$			
r t $3 / 16$ r $\neg \mathrm{t}$ $1 / 16$ $\neg \mathrm{r}$ t $6 / 16$ $\neg \mathrm{r}$ $\neg \mathrm{t}$ $6 / 16$			

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets - Causal structure tends to be the simplest
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Example

- Suppose we choose the ordering M, J, A, B, E -

MaryCalls
JohnCalls
$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ?$

Example

- Suppose we choose the ordering M, J, A, B, E -

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A) ?$

Example

- Suppose we choose the ordering M, J, A, B, E -


```
Burglary
```

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$?
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$?

Example

- Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A) ?$

Example

- Suppose we choose the ordering M, J, A, B, E -

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A)$? No

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1+2+4+2+4=13$ numbers needed

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

$P\left(X_{2} \mid X_{1}\right)$

$\mathrm{h} \mid \mathrm{h}$	0.5
$\mathrm{t} \mid \mathrm{h}$	0.5
$\mathrm{~h} \mid \mathrm{t}$	0.5
$\mathrm{t} \mid \mathrm{t}$	0.5

- Adding unneeded arcs isn't

| | $P\left(X_{1}\right)$ |
| :---: | :---: | :---: |
| h 0.5
 t 0.5\quadh 0.5
 t 0.5 | | wrong, it's just inefficient

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct

Bayes' Nets So Far

- We now know:
- What a Bayes' net is
- What joint distribution a Bayes' net encodes
- Briefly: properties of that joint distribution (independence)
- Previously: assembled BNs using an intuitive notion of conditional independence as causality
- Main goal: answer queries about conditional independence
- Next: how to compute posteriors quickly (inference)

Conditional Independence

- Reminder: independence
$-X$ and Y are independent if

$$
\forall x, y \quad P(x, y)=P(x) P(y)
$$

-X and Y are conditionally independent given Z
$\forall x, y, z P(x, y \mid z)=P(x \mid z) P(y \mid z)-\rightarrow$

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example

Causal Chains

- This configuration is a "causal chain"

X: Low pressure
Y: Rain
Z: Traffic

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

- Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
- Are X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y)
\end{aligned}
$$

Y: Project due
X: Newsgroup busy

Z: Lab full

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)
- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation?
- This is backwards from the other cases

X: Raining
Z: Ballgame
Y: Traffic

- Observing an effect activates influence between possible causes.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

