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Outline 

• Syntax 

• Semantics 



Bayes’ Nets: Big Picture 

• Two problems with using full joint distribution tables as 
our probabilistic models: 
– Unless there are only a few variables, the joint is WAY too big to 

represent explicitly 

– Hard to learn (estimate) anything empirically about more than a 
few variables at a time 

 

• Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities) 
– More properly called graphical models 

– We describe how variables locally interact 

– Local interactions chain together to give global, indirect 
interactions 

3 



Bayesian networks 

• A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions 

 

• Syntax: 
– a set of nodes, one per variable 

–  

– a directed, acyclic graph (link ≈ "directly influences") 

– a conditional distribution for each node given its parents: 
P (Xi | Parents (Xi)) 

 

• In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values 



Example 

• Topology of network encodes conditional independence 
assertions: 

 

 

 

 

 

 

• Weather is independent of the other variables 

• Toothache and Catch are conditionally independent 
given Cavity 



Example: Coin Flips 

X1 X2 Xn 

• N independent coin flips 

 

 

 

 

• No interactions between variables: 

absolute independence 
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Example: Coin Flips 

 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X1 X2 Xn 

Only distributions whose variables are absolutely independent 

can be represented by a Bayes’ net with no arcs. 7 



Example: Traffic 

• Variables: 

– R: It rains 

– T: There is traffic 

 

• Model 1: independence 

 

• Model 2: rain causes traffic 

 

• Why is an agent using model 2 better? 

 

R 

T 
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Example: Traffic 

 

R 

T 

  +r 1/4 

r 3/4 

 +r   +t 3/4 

t 1/4 

r   +t 1/2 

t 1/2 
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Example 

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor 
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a 
burglar? 

 

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

 

• Network topology reflects "causal" knowledge: 

– A burglar can set the alarm off 

– An earthquake can set the alarm off 

– The alarm can cause Mary to call 

– The alarm can cause John to call 



Example contd. 



Slightly different notation 

Burglary Earthquake 

Alarm 

John 

calls 
Mary 

calls 

B P(B) 

+b 0.001 

b 0.999 

E P(E) 

+e 0.002 

e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 

+b +e a 0.05 

+b e +a 0.94 

+b e a 0.06 

b +e +a 0.29 

b +e a 0.71 

b e +a 0.001 

b e a 0.999 

A J P(J|A) 

+a +j 0.9 

+a j 0.1 

a +j 0.05 

a j 0.95 

A M P(M|A) 

+a +m 0.7 

+a m 0.3 

a +m 0.01 

a m 0.99 



Compactness 

• A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values 

 

• Each row requires one number p for Xi = true 
(the number for  Xi = false is just 1-p) 

 

• If each variable has no more than k parents, the complete network requires 
O(n · 2k) numbers 

 

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution 

 

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31) 

 

• BNs: Huge space savings 

• Also easier to elicit local CPTs 

• Also turns out to be faster to answer queries (coming) 

 



Bayes’ Net Semantics 

• Let’s formalize the semantics of a 
Bayes’ net 

 

• A set of nodes, one per variable X 
 

• A directed, acyclic graph 
 

• A conditional distribution for each node 
– A collection of distributions over X, one for 

each combination of parents’ values 

 

 
 

– CPT: conditional probability table 

– Description of a noisy “causal” process 
 

A1 

X 

An 

A Bayes net = Topology (graph) + Local Conditional Probabilities 
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Semantics 

The full joint distribution is defined as the product of the local 

conditional distributions: 

 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 
 

e.g., P(j  m  a  b  e) 

 

 = P (j | a) P (m | a) P (a | b, e) P ( b) P ( e) 

 

To emphasize: every BN over a domain implicitly defines a joint 

distribution over that domain, specified by local probabilities and 

graph structure 

 

 

 

 

n 



Constructing Bayesian networks 

• 1. Choose an ordering of variables X1, … ,Xn 

• 2. For i = 1 to n 

– add Xi to the network 

– select parents from X1, … ,Xi-1 such that 

 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) 

 

This choice of parents guarantees: 

P (X1, … ,Xn)  = πi =1   P (Xi | X1, … , Xi-1) (chain rule) 

   = πi =1P (Xi | Parents(Xi)   (by construction) 

n 

n 



Causality? 

• When Bayes’ nets reflect the true causal patterns: 
– Often simpler (nodes have fewer parents) 

– Often easier to think about 

– Often easier to elicit from experts 

 

• BNs need not actually be causal 
– Sometimes no causal net exists over the domain 

– End up with arrows that reflect correlation, not causation 

 

• What do the arrows really mean? 
– Topology may happen to encode causal structure 

– Topology only guaranteed to encode conditional independence 
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Example: Traffic 

• Basic traffic net 

• Let’s multiply out the joint 

R 

T 

   r 1/4 

r 3/4 

 r    t 3/4 

t 1/4 

r    t 1/2 

t 1/2 

   r    t 3/16 

   r t 1/16 

r    t 6/16 

r t 6/16 
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Example: Reverse Traffic 

• Reverse causality? 

T 

R 

   t 9/16 

t 7/16 

 t    r 1/3 

r 2/3 

t    r 1/7 

r 6/7 

   r    t 3/16 

   r t 1/16 

r    t 6/16 

r t 6/16 
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Changing Bayes’ Net Structure 

• The same joint distribution can be 

encoded in many different Bayes’ nets 

– Causal structure tends to be the simplest 

 

• Analysis question: given some edges, 

what other edges do you need to add? 

– One answer: fully connect the graph 

– Better answer: don’t make any false 

conditional independence assumptions 
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• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

 

 

Example 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? 

 

 

Example 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)?  

P(B | A, J, M) = P(B)? 

Example 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? 

P(E | B, A, J, M) = P(E | A, B)? 

Example 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

No  

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? No 

P(E | B, A, J, M) = P(E | A, B)? Yes 

Example 



Example contd. 

 

 

 

 

 

 

• Deciding conditional independence is hard in noncausal directions 

•  

• (Causal models and conditional independence seem hardwired for 

humans!) 

•  

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed 

•  



Example: Coins 

• Extra arcs don’t prevent representing 

independence, just allow non-independence 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X1 X2 

h 0.5 

t 0.5 

h | h 0.5 

t | h 0.5 

X1 X2 

h | t 0.5 

t | t 0.5 
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 Adding unneeded arcs isn’t 

wrong, it’s just inefficient 



Summary 

• Bayesian networks provide a natural 

representation for (causally induced) 

conditional independence 

• Topology + CPTs = compact 

representation of joint distribution 

• Generally easy for domain experts to 

construct 



Bayes’ Nets So Far 

• We now know: 

– What a Bayes’ net is 

– What joint distribution a Bayes’ net encodes 

 

• Briefly: properties of that joint distribution 
(independence) 

– Previously: assembled BNs using an intuitive notion 
of conditional independence as causality 

– Main goal: answer queries about conditional 
independence 
 

• Next: how to compute posteriors quickly (inference) 
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Conditional Independence 

• Reminder: independence 

– X and Y are independent if 

 

 

– X and Y are conditionally independent given Z 
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Independence in a BN 

• Important question about a BN: 
– Are two nodes independent given certain evidence? 

– If yes, can prove using algebra (tedious in general) 

– If no, can prove with a counter example 



Causal Chains 

• This configuration is a “causal chain” 
 

 

 

 

 

– Is X independent of Z given Y? 

 

 

 

 

 

– Evidence along the chain “blocks” the influence 

X Y Z 

Yes! 

X: Low pressure 

Y: Rain 

Z: Traffic 
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Common Cause 

• Another basic configuration: two 
effects of the same cause 

 

– Are X and Z independent given Y? 

 

 

 

 

 

– Observing the cause blocks 
influence between effects. 

X 

Y 

Z 

Yes! 

Y: Project due 

X: Newsgroup 

busy 

Z: Lab full 
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Common Effect 

• Last configuration: two causes of 

one effect  

– Are X and Z independent? 

• Yes: the ballgame and the rain cause traffic, 

but they are not correlated 

• Still need to prove they must be (try it!) 

– Are X and Z independent given Y? 

• No: seeing traffic puts the rain and the 

ballgame in competition as explanation? 

– This is backwards from the other cases 

• Observing an effect activates influence 

between possible causes. 

 

X 

Y 

Z 

X: Raining 

Z: Ballgame 

Y: Traffic 
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The General Case 

• Any complex example can be analyzed 

using these three canonical cases 

 

• General question: in a given BN, are two 

variables independent (given evidence)? 

 

• Solution: analyze the graph 
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