Bayesian networks

Chapter 14

Section 1-2

Outline

- Syntax
- Semantics

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Bayesian networks

 A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

- a set of nodes, one per variable
- _
- a directed, acyclic graph (link ≈ "directly influences")
- a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i | \text{Parents}(X_i))$

• In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Topology of network encodes conditional independence

assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

Example: Coin Flips

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Slightly different notation

Α	7	P(J A)
+a	+j	0.9
+a	ij	0.1
¬а	+j	0.05
¬а	Γj	0.95

Α	M	P(M A)
+a	+m	0.7
+a	$\neg m$	0.3
−a	+m	0.01
−a	¬m	0.99

Е	P(E)
+e	0.002
¬e	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	¬а	0.05
+b	¬е	+a	0.94
+b	¬е	¬а	0.06
¬b	+e	+a	0.29
¬b	+e	¬а	0.71
b 	¬е	+a	0.001
Ь	¬е	¬а	0.999

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)
- BNs: Huge space savings
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

n

$$P(X_1, ..., X_n) = \pi_{i=1} P(X_i | Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$

To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that

$$P(X_i | Parents(X_i)) = P(X_i | X_1, ... X_{i-1})$$

This choice of parents guarantees:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i | X_1, ..., X_{i-1})$$
 (chain rule)
= $\pi_{i=1} P(X_i | Parents(X_i))$ (by construction)

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

P(T,R)		
r	t	3/16
r	−t	1/16
⊸r	t	6/16
−r	⊸t	6/16

D/D

Example: Reverse Traffic

Reverse causality?

P(T,R)		
r	t	3/16
r	⊣t	1/16
−r	t	6/16
⊸r	⊸t	6/16

D(TD)

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
 - Causal structure tends to be the simplest

- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don't make any false conditional independence assumptions

Suppose we choose the ordering M, J, A, B, E

•

$$P(J | M) = P(J)$$
?

Suppose we choose the ordering M, J, A, B, E

•

$$P(J | M) = P(J)$$
?

$$P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)?$$

Suppose we choose the ordering M, J, A, B, E

•

$$P(J \mid M) = P(J)$$
?

$$P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)? No$$

$$P(B \mid A, J, M) = P(B \mid A)$$
?

$$P(B \mid A, J, M) = P(B)$$
?

Suppose we choose the ordering M, J, A, B, E

•

$$P(J | M) = P(J)$$
?

$$P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)? No$$

$$P(B | A, J, M) = P(B | A)$$
? Yes

$$P(B \mid A, J, M) = P(B)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A)$$
?

Suppose we choose the ordering M, J, A, B, E

•

$$P(J | M) = P(J)$$
?

$$P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)? No$$

$$P(B | A, J, M) = P(B | A)$$
? Yes

$$P(B \mid A, J, M) = P(B)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A)$$
? **No**

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence

$P(X_1)$	
h	0.5
t	0.5

$$P(X_2)$$
h 0.5
t 0.5

h	0.5
t	0.5

 $P(X_1)$

$P(X_2)$	$ X_1\rangle$
h h	0.5
t h	0.5

 Adding unneeded arcs isn't wrong, it's just inefficient

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct

Bayes' Nets So Far

- We now know:
 - What a Bayes' net is
 - What joint distribution a Bayes' net encodes
- Briefly: properties of that joint distribution (independence)
 - Previously: assembled BNs using an intuitive notion of conditional independence as causality
 - Main goal: answer queries about conditional independence
- Next: how to compute posteriors quickly (inference)

Conditional Independence

- Reminder: independence
 - X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y)$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - - \rightarrow$$

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

– Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y) \qquad \text{Yes!}$$

Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$

 $= P(z|y) \\ - \text{Observing the cause blocks}$ Yes! influence between effects.

Y: Project due

X: Newsgroup busy

Z: Lab full

Common Effect

- Last configuration: two causes of one effect
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining

Z: Ballgame

Y: Traffic

The General Case

Any complex example can be analyzed using these three canonical cases

 General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph