
1

CS 2710 / ISSP 2610

Planning

2

Planning

• What is classical planning?

• Approaches
– STRIPS/PDDL

– State-Space Search

– Planning Graphs

– Satisfiability

– Situation Calculus

– Partially Ordered Plans

3

Planning problem

• Find a sequence of actions that achieves a given goal when

executed from a given initial world state. That is, given

– a set of operator descriptions (defining the possible primitive actions

by the agent),

– an initial state description, and

– a goal state description or predicate,

 compute a plan, which is

– a sequence of operator instances, such that executing them in the

initial state will change the world to a state satisfying the goal-state

description.

• Goals are usually specified as a conjunction of goals to be

achieved

Planning as Search-Based Problem Solving?

• Imagine a supermarket shopping scenario using search-based

problem solving:

– Goal: buy milk and bananas

– Operator: buy <obj>

– Heuristic function: does <obj> = milk or bananas?

• The operator would be instantiated with all possible objects that can

be bought! Then the heuristic function would evaluate each

instantiation. This is essentially a guessing game!

4

Least Commitment

• Or… suppose you haven‘t decided where to go shopping.

– Goal: buy milk and bananas

– Operators: go_to<store>, buy<obj,store>

– You can get milk at the convenience store, the dairy, or the supermarket.

– You can only get bananas at the supermarket.

• If you decide where to buy milk first (say, at the convenience store),

then you will either:

– have to backtrack, or

– have to go to more than one store!

• Planners need to be more flexible

5

6

Planning vs. problem solving

• Planning and problem solving methods can often solve the

same sorts of problems

• Planning is more powerful because of the representations

and methods used

• States, goals, and actions are decomposed into sets of

sentences (usually in first-order logic)

• Search can proceed through plan space rather than state

space (though there are also state-space planners)

• Subgoals can be planned independently, reducing the

complexity of the planning problem

7

Typical assumptions

• Atomic time: Each action is indivisible

• No concurrent actions are allowed (though actions do not

need to be ordered with respect to each other in the plan)

• Deterministic actions: The result of actions are completely

determined—there is no uncertainty in their effects

• Agent is the sole cause of change in the world

• Agent is omniscient: Has complete knowledge of the state

of the world

• Closed World Assumption: everything known to be true in

the world is included in the state description. Anything not

listed is false.

8

Blocks world

The blocks world is a micro-world that

consists of a table, a set of blocks and a

robot hand.

Some domain constraints:

– Only one block can be on another block

– Any number of blocks can be on the table

– The hand can only hold one block

Typical representation:

ontable(a)

ontable(c)

on(b,a)

handempty

clear(b)

clear(c)

A

B

C

TABLE

9

Situation calculus planning

• Intuition: Represent the planning problem using

first-order logic

– Situation calculus lets us reason about changes in

the world

– Use theorem proving to ―prove‖ that a particular

sequence of actions, when applied to the

situation characterizing the world state, will lead

to a desired result

10

Situation Calculus

• Logic for reasoning about changes in the state of the world

• The world is described by

– Sequences of situations of the current state

– Changes from one situation to another are caused by
actions

• The situation calculus allows us to

– Describe the initial state and a goal state

– Build the KB that describes the effect of actions
(operators)

– Prove that the KB and the initial state lead to a goal state

– Extracts a plan as side-effect of the proof

11

Situation Calculus Ontology

• Actions: terms, such as ―forward‖ and

―turn(right))‖

• Situations: terms; initial situation s0 and all

situations that are generated by applying an action

to a situation. result(a,s) names the situation

resulting when action a is done in situation s.

12

Situation Calculus Ontology continued

• Fluents: functions and predicates that vary from
one situation to the next. By convention, the
situation is the last argument of the fluent.
~holding(robot,gold,s0)

• Atemporal or eternal predicates and functions do
not change from situation to situation. gold(g1).
lastName(wumpus,smith).
adjacent(livingRoom,kitchen).

13

Frame Problem

• We run into the frame problem

• Effect axioms say what changes, but don‘t say

what stays the same

• A real problem, because (in a non-toy domain),

each action affects only a tiny fraction of all fluents

• We will return to situation calculus later…

14

Basic representations for planning

• Classic approach first used in the STRIPS planner circa 1970

• States represented as a conjunction of ground literals

– at(Home) ^ ~have(Milk) ^ ~have(bananas) ...

• Goals are conjunctions of literals, but may have variables

which are assumed to be existentially quantified

– at(?x) ^ have(Milk) ^ have(bananas) ...

• Do not need to fully specify state

– Non-specified either don‘t-care or assumed false

– Represent many cases in small storage

– Often only represent changes in state rather than entire situation

• Unlike theorem prover, not seeking whether the goal is true,

but is there a sequence of actions to attain it

15

Operator/action representation

• Operators contain three components:

– Action description

– Precondition - conjunction of positive literals

– Effect - conjunction of positive or negative literals

which describe how situation changes when operator

is applied

• Example:

Op[Action: Go(there),

 Precond: At(here) ^ Path(here,there),

 Effect: At(there) ^ ~At(here)]

• All variables are universally quantified

• Situation variables are implicit

– preconditions must be true in the state immediately
before operator is applied; effects are true
immediately after

Go(there)

At(here) ,Path(here,there)

At(there) , ~At(here)

16

Blocks world operators
• Here are the classic basic operations for the blocks world:

– stack(X,Y): put block X on block Y

– unstack(X,Y): remove block X from block Y

– pickup(X): pickup block X from the table

– putdown(X): put block X on the table

• Each will be represented by

– a list of preconditions

– a list of new facts to be added (add-effects)

– a list of facts to be removed (delete-effects)

– optionally, a set of (simple) variable constraints

• For example:

preconditions(stack(X,Y), [holding(X),clear(Y)])

deletes(stack(X,Y), [holding(X),clear(Y)]).

adds(stack(X,Y), [handempty,on(X,Y),clear(X)])

constraints(stack(X,Y), [X ~= Y,Y ~= table,X ~= table])

17

Blocks world operators II

operator(stack(X,Y),

 Precond [holding(X),clear(Y)],

 Add [handempty,on(X,Y),clear(X)],

 Delete [holding(X),clear(Y)],

 Constr [X ~=Y,Y ~=table,X ~= table]).

operator(pickup(X),

 [ontable(X), clear(X), handempty],

 [holding(X)],

 [ontable(X),clear(X),handempty],

 [X ~= table]).

operator(unstack(X,Y),

 [on(X,Y), clear(X), handempty],

 [holding(X),clear(Y)],

 [handempty,clear(X),on(X,Y)],

 [X ~= Y,Y ~= table, X ~= table]).

operator(putdown(X),

 [holding(X)],

 [ontable(X),handempty,clear(X)],

 [holding(X)],

 [X ~= table]).

18

Typical BW planning problem

Initial state:

clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal:

on(b,c)

on(a,b)

ontable(c)

A B C

A

B

C

A plan:

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

19

Another BW planning problem

Initial state:

clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal:

on(a,b)

on(b,c)

ontable(c)

A B C

A

B

C

A plan:

 pickup(a)

 stack(a,b)

 unstack(a,b)

 putdown(a)

 pickup(b)

 stack(b,c)

 pickup(a)

 stack(a,b)

20

Goal interaction

• Simple planning algorithms assume that the goals to be achieved are

independent

– Each can be solved separately and then the solutions concatenated

• This planning problem, called the ―Sussman Anomaly,‖ is the classic

example of the goal interaction problem:

– Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when

solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).

– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS could not handle this, although minor modifications can

get it to do simple cases

A B

C

Initial state

A

B

C

Goal state

21

State-space planning

• We initially have a space of situations (where you are, what

you have, etc.)

• The plan is a solution found by ―searching‖ through the

situations to get to the goal

• A progression planner searches forward from initial state

to goal state

• A regression planner searches backward from the goal

– This works if operators have enough information to go both ways

– Ideally this leads to reduced branching –you are only considering

things that are relevant to the goal

Planning Graphs

• Construct a graph that encodes constraints on possible plans

• Use this ―planning graph‖ to constrain search for a valid

plan:

– If valid plan exists, it‘s a subgraph of the planning graph

– Can also provide heuristics for search algorithms

• Planning graph can be built for each problem in polynomial

time

Problem handled by GraphPlan*

• Pure STRIPS operators:

– conjunctive preconditions

– no negated preconditions

– no conditional effects

– no universal effects

• Finds ―shortest parallel plan‖

• Sound, complete and will terminate with failure if there is

no plan.

*Version in [Blum& Furst IJCAI 95, AIJ 97],

later extended to handle all these restrictions [Koehler et al 97]

Planning graph
• Directed, leveled graph

– 2 types of nodes:

• Proposition: P

• Action: A

– 3 types of edges (between levels)

• Precondition: P -> A

• Add: A -> P

• Delete: A -> P

• Proposition and action levels alternate

• Action level includes actions whose preconditions are
satisfied in previous level plus no-op actions (to solve
frame problem).

Planning graph

…

…

…

Constructing the planning graph

• Level P1: all literals from the initial state

• Add an action in level Ai if all its preconditions are present
in level Pi

• Add a precondition in level Pi if it is the effect of some
action in level Ai-1 (including no-ops)

• Maintain a set of exclusion relations to eliminate
incompatible propositions and actions (thus reducing the
graph size)

P1 A1 P2 A2 … Pn-1 An-1 Pn

Mutual Exclusion relations

• Two actions (or literals) are mutually exclusive (mutex) at

some stage if no valid plan could contain both.

• Two actions are mutex if:

– Interference: one clobbers others‘ effect or precondition

– Competing needs: mutex preconditions

• Two propositions are mutex if:

– All ways of achieving them are mutex

– They negate each other

Mutual Exclusion relations

Inconsistent

Effects

Inconsistent

Support

Competing

Needs

Interference

(prec-effect)

Dinner Date example
• Initial Conditions: (and (garbage) (cleanHands) (quiet))

• Goal: (and (dinner) (present) (not (garbage))

• Actions:
–Cook :precondition (cleanHands)

 :effect (dinner)

–Wrap :precondition (quiet)

 :effect (present)

– Carry :precondition

 :effect (and (not (garbage)) (not (cleanHands))

–Dolly :precondition

 :effect (and (not (garbage)) (not (quiet)))

Dinner Date example

Dinner Date example

Observation 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

Observation 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

Observation 3

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…

Observation 4

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

Observation 5

Planning Graph ‗levels off‘.

• After some time k all levels are identical

• Because it‘s a finite space, the set of literals never decreases

and mutexes don‘t reappear.

Valid plan

A valid plan is a planning graph where:

• Actions at the same level don‘t interfere

• Each action‘s preconditions are made true by the plan

• Goals are satisfied

GraphPlan algorithm

• Grow the planning graph (PG) until all goals are reachable

and not mutex. (If PG levels off first, fail)

• Search the PG for a valid plan

• If non found, add a level to the PG and try again

Searching for a solution plan

• Backward chain on the planning graph

• Achieve goals level by level

• At level k, pick a subset of non-mutex actions to

achieve current goals. Their preconditions become

the goals for k-1 level.

• Build goal subset by picking each goal and

choosing an action to add. Use one already selected

if possible. Do forward checking on remaining

goals (backtrack if can‘t pick non-mutex action)

Plan Graph Search

If goals are present & non-mutex:
Choose action to achieve each goal

Add preconditions to next goal set

Termination for unsolvable

problems

• Graphplan records (memoizes) sets of unsolvable

goals:

– U(i,t) = unsolvable goals at level i after stage t.

• More efficient: early backtracking

• Also provides necessary and sufficient conditions

for termination:

– Assume plan graph levels off at level n, stage t > n

– If U(n, t-1) = U(n, t) then we know we‘re in a loop and

can terminate safely.

Dinner Date example
• Initial Conditions: (and (garbage) (cleanHands) (quiet))

• Goal: (and (dinner) (present) (not (garbage))

• Actions:
–Cook :precondition (cleanHands)

 :effect (dinner)

–Wrap :precondition (quiet)

 :effect (present)

– Carry :precondition

 :effect (and (not (garbage)) (not (cleanHands))

–Dolly :precondition

 :effect (and (not (garbage)) (not (quiet)))

Dinner Date example

Dinner Date example

Dinner Date example

