CS 2710/ ISSP 2610

Planning

Planning

« What Is classical planning?

« Approaches

— STRIPS/PDDL

— State-Space Search

— Planning Graphs

— Satisfiability

— Situation Calculus

— Partially Ordered Plans

Planning problem

* Find a sequence of actions that achieves a given goal when
executed from a given initial world state. That is, given

— a set of operator descriptions (defining the possible primitive actions
by the agent),

— an initial state description, and
— a goal state description or predicate,

compute a plan, which is

— a sequence of operator instances, such that executing them in the
Initial state will change the world to a state satisfying the goal-state
description.

 Goals are usually specified as a conjunction of goals to be

achieved

Planning as Search-Based Problem Solving?

Imagine a supermarket shopping scenario using search-based
problem solving:

— Goal: buy milk and bananas
— Operator: buy <obj>
— Heuristic function: does <obj> = milk or bananas?

The operator would be instantiated with all possible objects that can
be bought! Then the heuristic function would evaluate each
Instantiation. This is essentially a guessing game!

_east Commitment

 Or... suppose you haven’t decided where to go shopping.
— Goal: buy milk and bananas
— Operators: go_to<store>, buy<obj,store>
— You can get milk at the convenience store, the dairy, or the supermarket.
— You can only get bananas at the supermarket.

« If you decide where to buy milk first (say, at the convenience store),
then you will either:
— have to backtrack, or
— have to go to more than one store!

e Planners need to be more flexible

Planning vs. problem solving

 Planning and problem solving methods can often solve the
same sorts of problems

 Planning is more powerful because of the representations
and methods used

« States, goals, and actions are decomposed into sets of
sentences (usually in first-order logic)

« Search can proceed through plan space rather than state
space (though there are also state-space planners)

 Subgoals can be planned independently, reducing the
complexity of the planning problem

Typical assumptions

« Atomic time: Each action is indivisible

« No concurrent actions are allowed (though actions do not
need to be ordered with respect to each other in the plan)

 Deterministic actions: The result of actions are completely
determined—there iIs no uncertainty in their effects

« Agent is the sole cause of change in the world

« Agent is omniscient: Has complete knowledge of the state
of the world

 Closed World Assumption: everything known to be true in
the world is included in the state description. Anything not
listed is false.

Blocks world

The blocks world is a micro-world that
consists of a table, a set of blocks and a
robot hand.

Some domain constraints:
— Only one block can be on another block I
— Any number of blocks can be on the table
— The hand can only hold one block l_\

Typical representation: 5
ontable(a) |
ontable(c) A
on(b,a) TABLE
handempty

clear(b)
clear(c)

Situation calculus planning

o Intuition: Represent the planning problem using
first-order logic

—Situation calculus lets us reason about changes In
the world

—Use theorem proving to “prove” that a particular
sequence of actions, when applied to the
situation characterizing the world state, will lead
to a desired result

Situation Calculus

» L_ogic for reasoning about changes in the state of the world
» The world is described by
—Sequences of situations of the current state

—Changes from one situation to another are caused by
actions

» The situation calculus allows us to
—Describe the initial state and a goal state

—Build the KB that describes the effect of actions
(operators)

—Prove that the KB and the initial state lead to a goal state
—Extracts a plan as side-effect of the proof

10

Situation Calculus Ontology

e Actions: terms, such as “forward” and
“turn(right))”

e Situations: terms; initial situation sO and all
situations that are generated by applying an action
to a situation. result(a,s) names the situation
resulting when action a is done in situation s.

11

Situation Calculus Ontology continued

 Fluents: functions and predicates that vary from
one situation to the next. By convention, the
situation is the last argument of the fluent.
~holding(robot,gold,s0)

» Atemporal or eternal predicates and functions do
not change from situation to situation. gold(gl).
lastName(wumpus,smith).
adjacent(livingRoom,kitchen).

12

Frame Problem

* \We run into the frame problem

 Effect axioms say what changes, but don’t say
what stays the same

* A real problem, because (in a non-toy domain),
each action affects only a tiny fraction of all fluents

« We will return to situation calculus later. ..

13

Basic representations for planning

« Classic approach first used in the STRIPS planner circa 1970

« States represented as a conjunction of ground literals
— at(Home) * ~have(Milk) » ~have(bananas) ...

 Goals are conjunctions of literals, but may have variables
which are assumed to be existentially quantified
— at(?x) ™ have(Milk) ™ have(bananas) ...
» Do not need to fully specify state
— Non-specified either don’t-care or assumed false

— Represent many cases in small storage
— Often only represent changes in state rather than entire situation

« Unlike theorem prover, not seeking whether the goal is true,
but is there a sequence of actions to attain it

14

Operator/action representation

 Operators contain three components:
— Action description
— Precondition - conjunction of positive literals

— Effect - conjunction of positive or negative literals
which describe how situation changes when operator At(here) ,Path(here,there)

Is applied o
« Example: Go(there)
Op[Action: Go(there),

Precond: At(here)"Path(hereV At(there) , ~At(here)

Effect: At(there) ™ ~At(here)]
« All variables are universally quantified

» Situation variables are implicit

— preconditions must be true in the state immediately
before operator is applied; effects are true
Immediately after

15

Blocks world operators

« Here are the classic basic operations for the blocks world:

— stack(X,Y): put block X on block Y

— unstack(X,Y): remove block X from block Y
— pickup(X): pickup block X from the table

— putdown(X): put block X on the table

« Each will be represented by
— a list of preconditions
— a list of new facts to be added (add-effects)
— a list of facts to be removed (delete-effects)
— optionally, a set of (simple) variable constraints

» For example:
preconditions(stack(X,Y), [holding(X),clear(Y)])
deletes(stack(X,Y), [holding(X),clear(Y)]).
adds(stack(X,Y), [handempty,on(X,Y),clear(X)])
constraints(stack(X,Y), [X ~=Y,Y ~=table,X ~=table])

16

Blocks world operators I

operator(stack(X,Y), operator(unstack(X,Y),
Precond [holding(X),clear(Y)], [on(X,Y), clear(X), handempty],
Add [handempty,on(X,Y),clear(X)], [holding(X).clear(Y)],

[handempty,clear(X),on(X,Y)],

Delete [holding(X),clear(Y)],
] 9() (Y] [X ~=YV,Y ~=table, X ~= table]).

Constr [X ~=Y,Y ~=table,X ~= table]).

operator(putdown(X),
operator(pickup(X), [holding(X)],
'ontable(X), clear(X), handempty], [ontable(X),handempty,clear(X)],
Tholding(X)], [holding(X)],
'ontable(X),clear(X),handempty], [X ~= table]).
[X ~= table]).

17

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

|
[

‘A‘ C .

|
[

A plan:
pickup(b)
stack(b,c)

pickup(a)
stack(a,b)

O TP

18

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

|
[

‘A‘ C .

|
[

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

O[>

19

Goal Interaction

 Simple planning algorithms assume that the goals to be achieved are
Independent

— Each can be solved separately and then the solutions concatenated

 This planning problem, called the “Sussman Anomaly,” is the classic
example of the goal interaction problem:
— Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when
solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).
— Solving on(B,C) first will be undone when solving on(A,B)

 Classic STRIPS could not handle this, although minor modifications can
get it to do simple cases

C

[

A B

|
M &
C

Initial state Goal state 2

State-space planning

« We initially have a space of situations (where you are, what
you have, etc.)

» The plan 1s a solution found by “searching” through the
situations to get to the goal

« A progression planner searches forward from initial state
to goal state

» A regression planner searches backward from the goal

— This works if operators have enough information to go both ways

— ldeally this leads to reduced branching —you are only considering
things that are relevant to the goal

21

Planning Graphs

 Construct a graph that encodes constraints on possible plans

 Use this “planning graph” to constrain search for a valid
plan:
— If valid plan exists, it’s a subgraph of the planning graph
— Can also provide heuristics for search algorithms

 Planning graph can be built for each problem in polynomial
time

Problem handled by GraphPlan”

« Pure STRIPS operators:
— conjunctive preconditions
— no negated preconditions
— no conditional effects
— no universal effects

 Finds “shortest parallel plan™

« Sound, complete and will terminate with failure if there is
no plan.

*Version in [Blum& Furst IJCAI 95, AlJ 97],
later extended to handle all these restrictions [Koehler et al 97]

Planning graph
» Directed, leveled graph
— 2 types of nodes:
 Proposition: P
« Action: A
— 3 types of edges (between levels)
» Precondition: P -> A
« Add: A->P
e Delete: A->P

* Proposition and action levels alternate

 Action level includes actions whose preconditions are
satisfied in previous level plus no-op actions (to solve
frame problem).

Planning graph

% o 0

0 0 0 0
\

o= o/j\ o>o>>\— N0

O o oIS,

—o0 0 0

O/ >(0

g g

Constructing the planning graph

« Level P,: all literals from the initial state

« Add an action in level A, if all its preconditions are present
In level P,

 Add a precondition in level P; if it is the effect of some
action in level A, ; (including no-ops)

« Maintain a set of exclusion relations to eliminate
Incompatible propositions and actions (thus reducing the
graph size)

P,AP,A, ...P. 1A P,

Mutual Exclusion relations

« Two actions (or literals) are mutually exclusive (mutex) at
some stage If no valid plan could contain both.

« Two actions are mutex if:
— Interference: one clobbers others’ effect or precondition
— Competing needs: mutex preconditions

« Two propositions are mutex if:

— All ways of achieving them are mutex
— They negate each other

Inconsistent
Effects

Competing

Needs <

Mutual Exclusion relations

O O O O

O O O O '\ Interference
O O O O | (prec-effect)
O —-0 O —-a0

o— o o—

O O O O

0 :O 0O 0O Inconsistent
0 0 o) 0 Support
O O O O

Dinner Date example
* [nitial Conditions: (and (garbage) (cleanHands) (quiet))

» Goal: (and (dinner) (present) (not (garbage))

 Actions:
— Cook :precondition (cleanHands)
.effect (dinner)
—Wrap :precondition (quiet)
.effect (present)
— Carry :precondition
.effect (and (not (garbage)) (not (cleanHands))
—Dolly :precondition
.effect (and (not (garbage)) (not (quiet)))

Dinner Date example

garb garb\
—1garb
cleanH cleanH
~“1cleanH
quiet quiet
wrap
“1quiet
dinner

present

Dinner Date example

garb
—|garD
cleanH
‘Icleanl—)
\ quiet
\ —Iquie)
dinner% \ \dinner
present/ \ present

quiet

—r

Observation 1

Y \

q
~q

Propositions monotonically increase

T~

>

yd

(always carried forward by no-ops)

—r

Observation 2

Y \

q
~q

T~

>

d

Actions monotonically increase

Observation 3

Proposition mutex relationships monotonically decrease

O. T

A

Observation 4

Action mutex relationships monotonically decrease

AN

N _— o) ©

A

D

AN

(7)) - O ©

D

(7)) - o] ©

Observation 5

Planning Graph ‘levels off’.
o After some time k all levels are identical

* Because 1t’s a finite space, the set of literals never decreases
and mutexes don’t reappear.

Valid plan

A valid plan is a planning graph where:
o Actions at the same level don’t interfere

» Each action’s preconditions are made true by the plan
» Goals are satisfied

GraphPlan algorithm

« Grow the planning graph (PG) until all goals are reachable
and not mutex. (If PG levels off first, fail)

» Search the PG for a valid plan
* If non found, add a level to the PG and try again

Searching for a solution plan

« Backward chain on the planning graph
 Achieve goals level by level

* At level k, pick a subset of non-mutex actions to
achieve current goals. Their preconditions become
the goals for k-1 level.

 Build goal subset by picking each goal and
choosing an action to add. Use one already selected
If possible. Do forward checking on remaining
goals (backtrack if can’t pick non-mutex action)

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set

Termination for unsolvable
problems

 Graphplan records (memoizes) sets of unsolvable
goals:
— U(i,t) = unsolvable goals at level i after stage t.

» More efficient: early backtracking
 Also provides necessary and sufficient conditions
for termination:

— Assume plan graph levels off at level n, stage t > n

—If U(n, t-1) = U(n, t) then we know we’re in a loop and
can terminate safely.

Dinner Date example
* [nitial Conditions: (and (garbage) (cleanHands) (quiet))

» Goal: (and (dinner) (present) (not (garbage))

 Actions:
— Cook :precondition (cleanHands)
.effect (dinner)
—Wrap :precondition (quiet)
.effect (present)
— Carry :precondition
.effect (and (not (garbage)) (not (cleanHands))
—Dolly :precondition
.effect (and (not (garbage)) (not (quiet)))

Dinner Date example

garb garb
u garb
cleanH cleanH
“1cleanH
quiet quiet
“1quiet
dinner

present

Dinner Date example

garb
—|garD
cleanH
‘Icleanl—)
\ quiet
\ —Iquie)
dinner% \ \dinner
present/ \ present

quiet

Dinner Date example

——

carry
T~ —1garb

cleanH \
COO0K
quiet quiet
e

dinner dinner

present

