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Planning 

• What is classical planning? 

• Approaches 
– STRIPS/PDDL 

– State-Space Search 

– Planning Graphs 

– Satisfiability 

– Situation Calculus 

– Partially Ordered Plans 
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Planning problem 

• Find a sequence of actions that achieves a given goal when 

executed from a given initial world state.  That is, given  

– a set of operator descriptions (defining the possible primitive actions 

by the agent),  

– an initial state description, and  

– a goal state description or predicate,  

 compute a plan, which is  

– a sequence of operator instances, such that executing them in the 

initial state will change the world to a state satisfying the goal-state 

description.  

• Goals are usually specified as a conjunction of goals to be 

achieved 



Planning as Search-Based Problem Solving? 

• Imagine a supermarket shopping scenario using search-based 

problem solving: 

 

– Goal: buy milk and bananas 

– Operator: buy <obj> 

– Heuristic function: does <obj> = milk or bananas? 

 

• The operator would be instantiated with all possible objects that can 

be bought!  Then the heuristic function would evaluate each 

instantiation.  This is essentially a guessing game! 
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Least Commitment 

• Or… suppose you haven‘t decided where to go shopping. 

– Goal: buy milk and bananas 

– Operators: go_to<store>, buy<obj,store> 

– You can get milk at the convenience store, the dairy, or the supermarket. 

– You can only get bananas at the supermarket. 

 

• If you decide where to buy milk first (say, at the convenience store), 

then you will either:  

– have to backtrack, or  

– have to go to more than one store!   

• Planners need to be more flexible 
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Planning vs. problem solving 

• Planning and problem solving methods can often solve the 

same sorts of problems 

• Planning is more powerful because of the representations 

and methods used 

• States, goals, and actions are decomposed into sets of 

sentences (usually in first-order logic) 

• Search can proceed through plan space rather than state 

space (though there are also state-space planners) 

• Subgoals can be planned independently, reducing the 

complexity of the planning problem 
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Typical assumptions 

• Atomic time: Each action is indivisible  

• No concurrent actions are allowed  (though actions do not 

need to be ordered with respect to each other in the plan) 

• Deterministic actions: The result of actions are completely 

determined—there is no uncertainty in their effects  

• Agent is the sole cause of change in the world  

• Agent is omniscient: Has complete knowledge of the state 

of the world  

• Closed World Assumption: everything known to be true in 

the world is included in the state description. Anything not 

listed is false.  
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Blocks world 

The blocks world is a micro-world that 

consists of a table, a set of blocks and a 

robot hand. 

Some domain constraints: 

– Only one block can be on another block 

– Any number of blocks can be on the table 

– The hand can only hold one block 

Typical representation: 

ontable(a) 

ontable(c) 

on(b,a) 

handempty 

clear(b) 

clear(c) 

 

 

 

A 

B 

C 

TABLE 
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Situation calculus planning 

• Intuition:  Represent the planning problem using 

first-order logic 

– Situation calculus lets us reason about changes in 

the world 

– Use theorem proving to ―prove‖ that a particular 

sequence of actions, when applied to the 

situation characterizing the world state, will lead 

to a desired result 
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Situation Calculus 

• Logic for reasoning about changes in the state of the world 

• The world is described by 

– Sequences of situations of the current state 

– Changes from one situation to another are caused by 
actions 

• The situation calculus allows us to  

– Describe the initial state and a goal state 

– Build the KB that describes the effect of actions 
(operators) 

– Prove that the KB and the initial state lead to a goal state 

– Extracts a plan as side-effect of the proof 
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Situation Calculus Ontology 

• Actions:  terms, such as ―forward‖ and 

―turn(right))‖ 

• Situations:  terms; initial situation s0 and all 

situations that are generated by applying an action 

to a situation.  result(a,s) names the situation 

resulting when action a is done in situation s. 
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Situation Calculus Ontology continued 

• Fluents:  functions and predicates that vary from 
one situation to the next.  By convention, the 
situation is the last argument of the fluent.  
~holding(robot,gold,s0) 

• Atemporal or eternal predicates and functions do 
not change from situation to situation.  gold(g1).  
lastName(wumpus,smith).  
adjacent(livingRoom,kitchen). 
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Frame Problem 

• We run into the frame problem 

• Effect axioms say what changes, but don‘t say 

what stays the same 

• A real problem, because (in a non-toy domain), 

each action affects only a tiny fraction of all fluents 

 

• We will return to situation calculus later… 
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Basic representations for planning 

• Classic approach first used in the STRIPS planner circa 1970 

• States represented as a conjunction of ground literals 

– at(Home) ^ ~have(Milk) ^ ~have(bananas) ... 

•  Goals are conjunctions of literals, but may have variables 

which are assumed to be existentially quantified 

– at(?x) ^ have(Milk) ^ have(bananas) ... 

• Do not need to fully specify state  

– Non-specified either don‘t-care or assumed false  

– Represent many cases in small storage  

– Often only represent changes in state rather than entire situation   

• Unlike theorem prover, not seeking whether the goal is true, 

but is there a sequence of actions to attain it  
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Operator/action representation 

• Operators contain three components: 

– Action description  

– Precondition - conjunction of positive literals  

– Effect - conjunction of positive or negative literals 

which describe how situation changes when operator 

is applied  

• Example: 

Op[Action:  Go(there),  

      Precond:  At(here) ^ Path(here,there),  

      Effect:  At(there) ^ ~At(here)] 

• All variables are universally quantified  

• Situation variables are implicit 

– preconditions must be true in the state immediately 
before operator is applied; effects are true 
immediately after 

Go(there) 

At(here) ,Path(here,there) 

At(there) , ~At(here) 
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Blocks world operators 
• Here are the classic basic operations for the blocks world: 

– stack(X,Y): put block X on block Y 

– unstack(X,Y): remove block X from block Y 

– pickup(X): pickup block X from the table 

– putdown(X): put block X on the table 

• Each will be represented by  

– a list of preconditions 

– a list of new facts to be added (add-effects) 

– a list of facts to be removed (delete-effects) 

– optionally, a set of (simple) variable constraints 

• For example: 

preconditions(stack(X,Y), [holding(X),clear(Y)]) 

deletes(stack(X,Y), [holding(X),clear(Y)]). 

adds(stack(X,Y), [handempty,on(X,Y),clear(X)]) 

constraints(stack(X,Y), [X ~= Y,Y ~= table,X ~= table]) 
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Blocks world operators II 

operator(stack(X,Y),  

         Precond [holding(X),clear(Y)], 

         Add [handempty,on(X,Y),clear(X)], 

         Delete [holding(X),clear(Y)], 

      Constr [X ~=Y,Y ~=table,X ~= table]). 

 

 

operator(pickup(X), 

         [ontable(X), clear(X), handempty], 

         [holding(X)], 

         [ontable(X),clear(X),handempty], 

         [X ~= table]). 

operator(unstack(X,Y),  

        [on(X,Y), clear(X), handempty], 

        [holding(X),clear(Y)], 

        [handempty,clear(X),on(X,Y)], 

        [X ~= Y,Y ~= table, X ~= table]). 

 

 

operator(putdown(X),  

         [holding(X)], 

         [ontable(X),handempty,clear(X)], 

         [holding(X)], 

         [X ~= table]). 
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Typical BW planning problem 

Initial state: 

clear(a) 

clear(b) 

clear(c) 

ontable(a) 

ontable(b) 

ontable(c) 

handempty 

Goal: 

on(b,c) 

on(a,b) 

ontable(c) 

A B C 

A 

B 

C 

A plan: 

pickup(b) 

stack(b,c) 

pickup(a) 

stack(a,b) 
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Another BW planning problem 

Initial state: 

clear(a) 

clear(b) 

clear(c) 

ontable(a) 

ontable(b) 

ontable(c) 

handempty 

Goal: 

on(a,b) 

on(b,c) 

ontable(c) 

A B C 

A 

B 

C 

A plan: 

 pickup(a) 

       stack(a,b) 

       unstack(a,b) 

       putdown(a) 

       pickup(b) 

       stack(b,c) 

       pickup(a) 

       stack(a,b) 
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Goal interaction 

• Simple planning algorithms assume that the goals to be achieved are 

independent 

– Each can be solved separately and then the solutions concatenated 

• This planning problem, called the ―Sussman Anomaly,‖ is the classic 

example of the goal interaction problem:  

– Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when 

solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).   

– Solving on(B,C) first will be undone when solving on(A,B) 

• Classic STRIPS could not handle this, although minor modifications can 

get it to do simple cases 

 

A B 

C 

Initial state 

A 

B 

C 

Goal state 
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State-space planning 

• We initially have a space of situations (where you are, what 

you have, etc.) 

• The plan is a solution found by ―searching‖ through the 

situations to get to the goal 

• A progression planner searches forward from initial state 

to goal state 

• A regression planner searches backward from the goal 

– This works if operators have enough information to go both ways 

– Ideally this leads to reduced branching –you are only considering 

things that are relevant to the goal 



Planning Graphs 

• Construct a graph that encodes constraints on possible plans 

• Use this ―planning graph‖ to constrain search for a valid 

plan: 

– If valid plan exists, it‘s a subgraph of the planning graph 

– Can also provide heuristics for search algorithms 

• Planning graph can be built for each problem in polynomial 

time 



Problem handled by GraphPlan* 

• Pure STRIPS operators:  

– conjunctive preconditions  

– no negated preconditions 

– no conditional effects 

– no universal effects 

• Finds ―shortest parallel plan‖ 

• Sound, complete and will terminate with failure if there is 

no plan. 

*Version in [Blum& Furst IJCAI 95, AIJ 97],  

later extended to handle all these restrictions [Koehler et al 97] 



Planning graph  
• Directed, leveled graph 

– 2 types of nodes: 

• Proposition: P 

• Action: A 

– 3 types of edges (between levels) 

• Precondition: P -> A 

• Add: A -> P 

• Delete: A -> P 

• Proposition and action levels alternate 

• Action level includes actions whose preconditions are 
satisfied in previous level plus no-op actions (to solve 
frame problem). 



Planning graph 

… 

… 

… 



Constructing the planning graph 

• Level P1: all literals from the initial state 

• Add an action in level Ai if all its preconditions are present 
in level Pi 

• Add a precondition in level Pi if it is the effect of some 
action in level Ai-1 (including no-ops) 

• Maintain a set of exclusion relations to eliminate 
incompatible propositions and actions (thus reducing the 
graph size) 

 

P1 A1 P2 A2 … Pn-1 An-1 Pn 



Mutual Exclusion relations 

• Two actions (or literals) are mutually exclusive (mutex) at 

some stage if no valid plan could contain both. 

• Two actions are mutex if: 

– Interference: one clobbers others‘ effect or precondition 

– Competing needs: mutex preconditions 

• Two propositions are mutex if: 

– All ways of achieving them are mutex 

– They negate each other 



Mutual Exclusion relations 

Inconsistent 

Effects 

Inconsistent 

Support 

Competing 

Needs 

Interference 

(prec-effect) 



Dinner Date example 
• Initial Conditions: (and (garbage) (cleanHands) (quiet)) 

• Goal: (and (dinner) (present) (not (garbage)) 

• Actions: 
–Cook   :precondition (cleanHands) 

               :effect   (dinner) 

–Wrap   :precondition (quiet) 

               :effect   (present) 

– Carry   :precondition 

               :effect (and (not (garbage)) (not (cleanHands)) 

–Dolly   :precondition 

               :effect (and (not (garbage)) (not (quiet))) 



Dinner Date example 



Dinner Date example 



Observation 1 

Propositions monotonically increase 
(always carried forward by no-ops) 

p 

 

¬q 

 

¬r 

p 

 

q 

 

¬q 

 

¬r 

p 

 

q 

 

¬q 

 

r 

 

¬r 

p 

 

q 

 

¬q 

 

r 

 

¬r 

A A 

B 

A 

B 



Observation 2 

Actions monotonically increase 
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Observation 3 

Proposition mutex relationships monotonically decrease 
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Observation 4 

Action mutex relationships monotonically decrease 
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Observation 5 

Planning Graph ‗levels off‘.  

• After some time k all levels are identical 

• Because it‘s a finite space, the set of literals never decreases 

and mutexes don‘t reappear. 

 



Valid plan 

A valid plan is a planning graph where: 

• Actions at the same level don‘t interfere  

• Each action‘s preconditions are made true by the plan 

• Goals are satisfied 



GraphPlan algorithm 

• Grow the planning graph (PG) until all goals are reachable 

and not mutex. (If PG levels off first, fail) 

• Search the PG for a valid plan 

• If non found, add a level to the PG and try again 



Searching for a solution plan 

• Backward chain on the planning graph 

• Achieve goals level by level 

• At level k, pick a subset of non-mutex actions to 

achieve current goals. Their preconditions become 

the goals for k-1 level. 

• Build goal subset by picking each goal and 

choosing an action to add. Use one already selected 

if possible. Do forward checking on remaining 

goals (backtrack if can‘t pick non-mutex action) 



Plan Graph Search 

If goals are present & non-mutex: 
Choose action to achieve each goal 

Add preconditions to next goal set 



Termination for unsolvable 

problems 

• Graphplan records (memoizes) sets of unsolvable 

goals: 

– U(i,t) = unsolvable goals at level i after stage t. 

• More efficient: early backtracking 

• Also provides necessary and sufficient conditions 

for termination: 

– Assume plan graph levels off at level n, stage t > n 

– If U(n, t-1) = U(n, t) then we know we‘re in a loop and 

can terminate safely. 



Dinner Date example 
• Initial Conditions: (and (garbage) (cleanHands) (quiet)) 

• Goal: (and (dinner) (present) (not (garbage)) 

• Actions: 
–Cook   :precondition (cleanHands) 

               :effect   (dinner) 

–Wrap   :precondition (quiet) 

               :effect   (present) 

– Carry   :precondition 

               :effect (and (not (garbage)) (not (cleanHands)) 

–Dolly   :precondition 

               :effect (and (not (garbage)) (not (quiet))) 



Dinner Date example 
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Dinner Date example 


