Constraint Satisfaction Problems

Chapter 6
Section 1 – 4

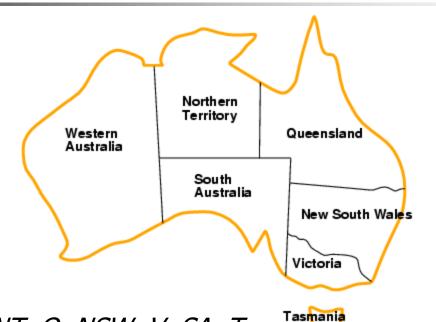
Outline

- Constraint Satisfaction Problems (CSP)
- Constraint Propagation (Inference!)
- Backtracking search for CSPs
- Local search for CSPs

Constraint satisfaction problems (CSPs)

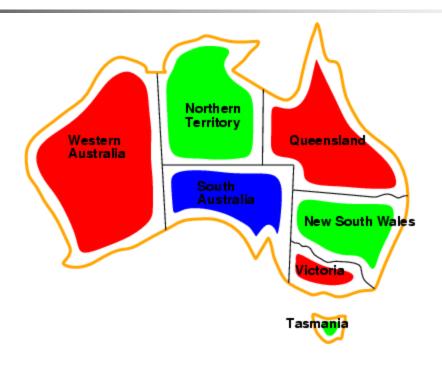
- Standard search problem:
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring



- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{\text{red,green,blue}\}$
- Constraints: adjacent regions must have different colors
- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

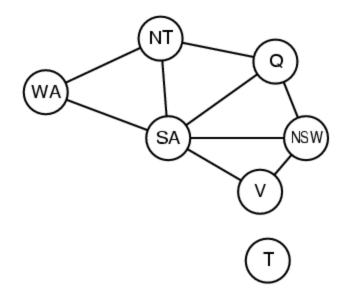
Example: Map-Coloring



Solutions are complete and consistent assignments,
 e.g., WA = red, NT = green,Q = red,NSW =
 green,V = red,SA = blue,T = green

Constraint graph

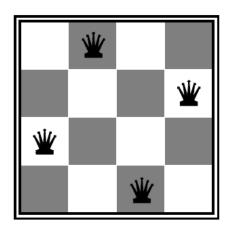
- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints



Example: N-Queens

Formulation 1:

- Variables: X_{ij}
- Domains: $\{0, 1\}$
- Constraints



$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$$

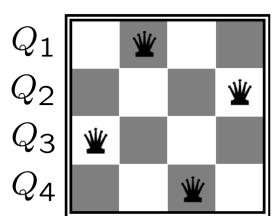
$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - **Domains:** $\{1, 2, 3, ... N\}$



Constraints:

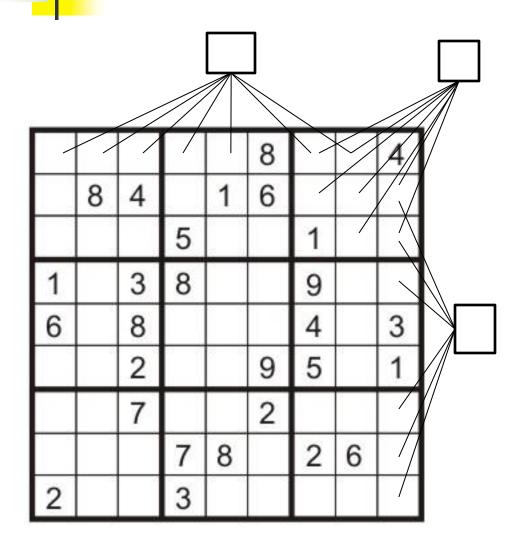
Implicit: $\forall i,j$ non-threatening (Q_i,Q_j)

-or-

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

• • •

Example: Sudoku



- Variables:
 - Each (open) square
- Domains:
 - **•** {1,2,...,9}
- Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

Varieties of CSPs

Discrete variables

- finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
- infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \le StartJob_3$

Continuous variables

- e.g., start/end times for Hubble Space Telescope observations
- linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables
- Preferences (soft constraints):
 - E.g., red is better than green
 - (We'll ignore these until we get to Bayes' nets)

Standard search formulation (incremental)

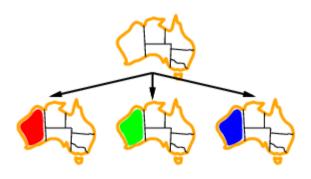
Let's start with the straightforward approach, then fix it

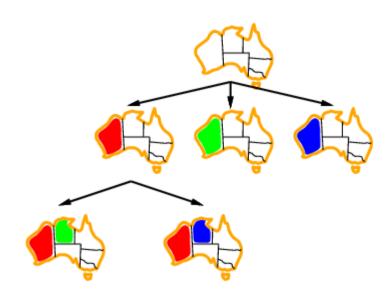
States are defined by the values assigned so far

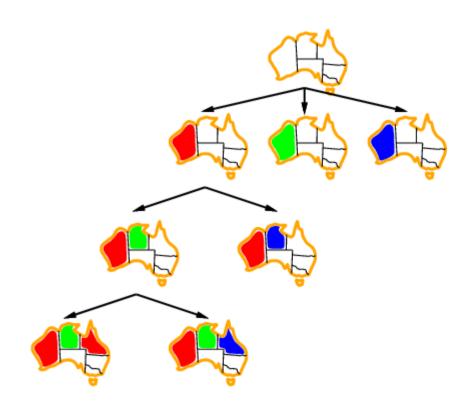
- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
- Goal test: the current assignment is complete
- This is the same for all CSPs.
- Every solution appears at depth *n* with *n* variables→ use depth-first search
- Path is irrelevant

Backtracking search

- Variable assignments are commutative, i.e.,
 [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for $n \approx 25$



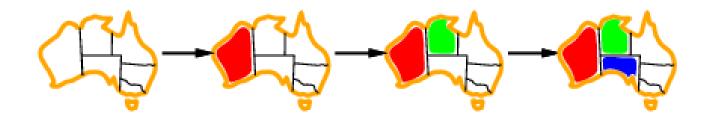




- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Most constrained variable

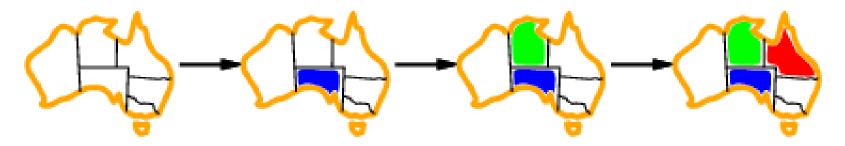
Most constrained variable:
 choose the variable with the fewest legal values



 a.k.a. minimum remaining values (MRV) heuristic

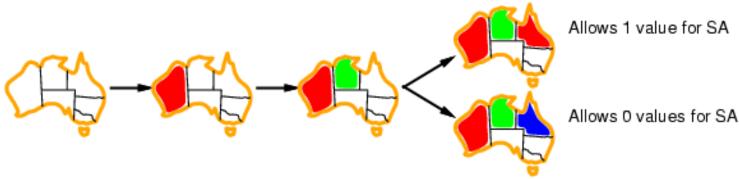
Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables



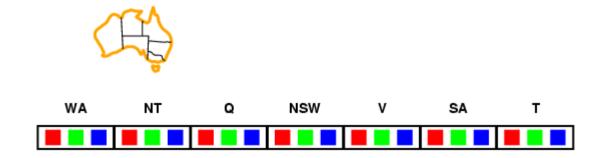
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

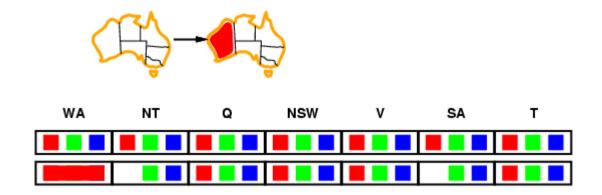


 Combining these heuristics makes 1000 queens feasible

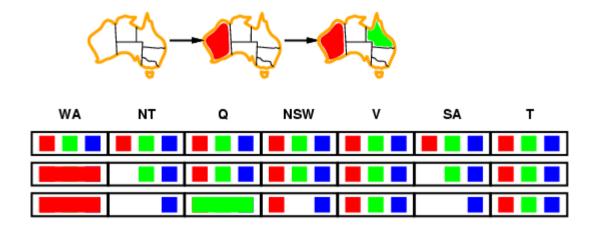
- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values



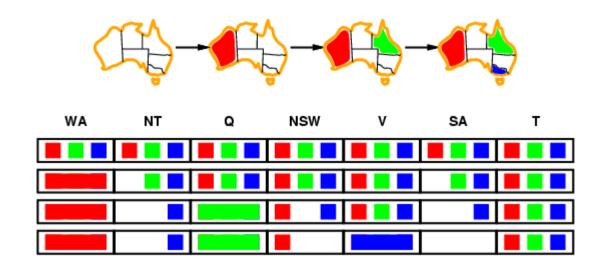
- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values



- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

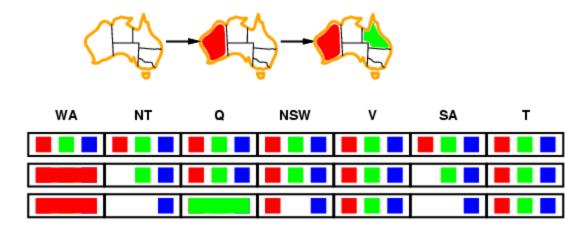


- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values



Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

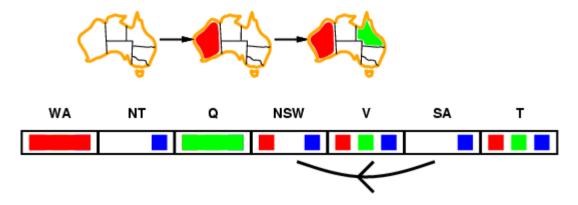


- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

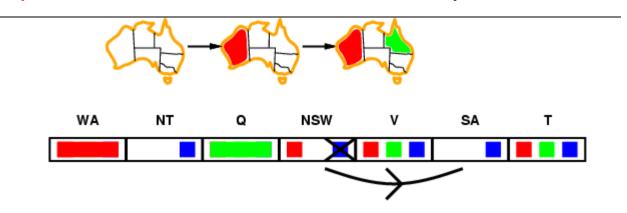
for every value x of X there is some allowed y



Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

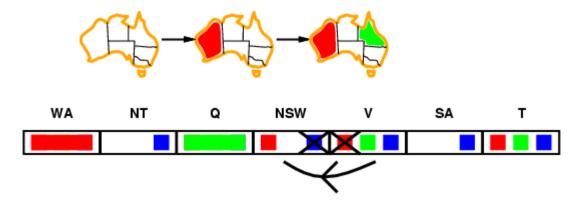


Ar

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

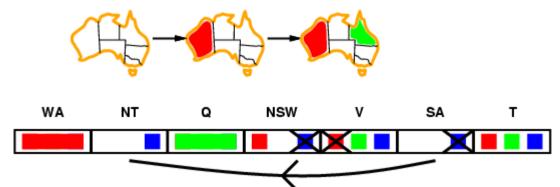
for every value x of X there is some allowed y



If X loses a value, neighbors of X need to be rechecked

Arc consistency

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y



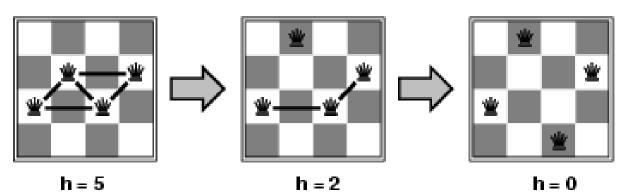
- If X loses a value, neighbors of x need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks



 Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice