
Adversarial Search 

Chapter 5 

 

 

Sections 1-5 



Outline 

• Games 

• Optimal decisions 

• α-β pruning 

• Imperfect, real-time decisions 

• Stochastic Games 



Game Playing State-of-the-Art 
• Checkers: Chinook ended 40-year-reign of human world champion Marion 

Tinsley in 1994. Used an endgame database defining perfect play for all 
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 
positions.  Checkers is now solved! 

 

• Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue examined 200 million positions per second, 
used very sophisticated evaluation and undisclosed methods for extending 
some lines of search up to 40 ply.  Current programs are even better, if less 
historic. 

 

• Othello: Human champions refuse to compete against computers, which are 
too good. 

 

• Go: Human champions are beginning to be challenged by machines, though 
the best humans still beat the best machines. In go, b > 300, so most programs 
use pattern knowledge bases to suggest plausible moves, along with 
aggressive pruning. 

 

• Pacman: unknown 

 

• AAAI conferences now have general game-playing competitions, with a $10K 
prize! 

 

 

 

3 



Game Search 

• Game-playing programs developed by AI researchers since 
the beginning of the modern AI era (chess, checkers in 
1950s) 

 

• Game Search 
– Sequences of player’s decisions we control 

– Decision of other player(s) we do not control 

 

• Contingency problem: many possible opponent’s moves 
must be “covered” by the solution 
– Introduces uncertainty to the game since we do not know what the 

opponent will do 

 

• Rational opponent: maximizes it’s own utility function 



Types of Game Problems 

• Adversarial 

– Win of one player is a loss of the other 

– Focus of this course 

 

• Cooperative 

– Players have common interests and utility 
function 

 

• A spectrum of others in between 



Typical AI “Games”: 

• Deterministic and Fully Observable 

Environment 

• Two agents with turn-taking for actions 

• Zero-sum (adverserial) 

• Abstract (robotic soccer notable exception) 

– state easy to represent, few action choices, 

well-defined goals 

– hard to solve 



Types of Games 

Deterministic Chance 

Perfect 

Information 

Tic Tac Toe, 

Chess 

Backgammon 

Imperfect 

information 

Stratego Poker, 

Bridge 



Deterministic Single-Player 

• Deterministic, single player, 
perfect information: 
– Know the rules 
– Know what actions do 
– Know when you win 
– E.g. Freecell, 8-Puzzle, Rubik’s 

cube 
• … it’s just search! 
• Slight reinterpretation: 

– Each node stores a value: the 
best outcome it can reach 

– This is the maximal outcome of 
its children (the max value) 

– Note that we don’t have path 
sums as before (utilities at end) 

• After search, can pick move that 
leads to best node 

win lose lose 
8 



Deterministic Two-Player 

• E.g. tic-tac-toe, chess, 
checkers 

• Zero-sum games 
– One player maximizes result 

– The other minimizes result 

• Minimax search 
– A state-space search tree 

– Players alternate 

– Choose move to position with 
highest minimax value = best 
achievable utility against best 
play 

8 2 5 6 

max 

min 

9 



Game Search 

• Problem Formulation 

– Initial state:  initial board position + information about 

whose move it is 

– Successors:  legal moves a player can make 

– Goal (terminal test): determines when the game is over 

– Utility function: measures the outcome of the game and 

its desirability 

 

• Search objective 

– Find the sequence of player’s decisions (moves) 

maximizing its utility 

– Consider the opponent’s moves and their utility 

 



Game Tree 

• Initial State and Legal Moves for Each 

Side 



Game Tree  

(2-player, deterministic, turns) 



Game Tree  

(2-player, deterministic, turns) 

• MAX and MIN are the 2 players 

 

• MAX goes first 

 

• Players then take turns 

 



Game Tree  

(2-player, deterministic, turns) 

• MAX has 9 possible legal first 

moves (ignoring symmetry) 

 



Game Tree  

(2-player, deterministic, turns) 

• Utility of terminal states (when 

game is over) is from MAX’s point 

of view 

 

• Points are awarded to both 

players at the end of the game 

• -1 is a loss 

• 0 is a draw 

• 1 is a win 



Minimax Algorithm 

• How do we deal with the contingency 

problem?  

 

– Assuming that the opponent is rational and 

always optimizes its behavior (opposite to us), we 

consider the opponent’s best response 

– Then the minimax algorithm determines the best 

move 

 



Minimax 

• Finds an optimal (contingent) strategy, assuming perfect play 

for deterministic games 

 

• Idea: choose move to position with highest MINIMAX VALUE  

 = best achievable payoff against best play 

 

• MINIMAX-VALUE (n) 

– UTILITY (n)    if n is a terminal state 

– max_s MINIMAX-VALUE (s)  if n is a MAX node 

– min_s  MINIMAX-VALUE (s)  if n is a MIN node 

       (where s is an element of the successors of n) 



Minimax Example 

18 



Properties of minimax 

• Complete? Yes (if tree is finite) 

• Optimal? Yes (against an optimal opponent) 

• Time complexity? O(bm) 

• Space complexity? O(bm) (depth-first exploration) 

 

• For chess, b ≈ 35, m ≈100 for "reasonable" games 

 exact solution completely infeasible 

• Do we really need to explore every path??? 



Solutions to the Complexity Problem 

• Dynamic pruning of redundant branches of the 

search tree 

– Some branches will never be played by rational players 

since they include sub-optimal decisions (for either player) 

• Identify a provably suboptimal branch of the search tree before it is 

fully explored 

• Eliminate the suboptimal branch 

– Procedure:  Alpha-Beta Pruning 

 

• Early cutoff of the search tree 

– Use imperfect minimax value estimate of non-terminal 

states 



α-β pruning example 



α-β pruning example 



α-β pruning example 



α-β pruning example 



α-β pruning example 



α-β pruning example 

MINIMAX-VALUE(root) 

= max(min(3,12,8), min(2,x,y), min(14,5,2)) 

= max (3, min(2,x,y), 2) 

= max(3, z, 2)  for z <= 2 

= 3 

 



Properties of α-β 

• Pruning does not affect final result 
 

• Good move ordering improves effectiveness of pruning 
 

• With "perfect ordering," time complexity = O(bm/2) 
 

• A simple example of the value of reasoning about which 
computations are relevant (a form of metareasoning) 



Resource limits 

Recap 

– Minimax explores the full search space 

– Alpha Beta prunes, but still searches all the way to 

terminal states for a portion of the search space 

 

Standard approaches to fix resource limits 

– cutoff test:  

e.g., depth limit 

– evaluation function  

= estimated desirability of position 



Evaluation functions 

• For chess, typically linear weighted sum of features 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 

 

• e.g., w1 = 9 with  

 f1(s) = (number of white queens) –  (number of black 

queens), etc. 



Cutting off search 

MinimaxCutoff is identical to MinimaxValue except 

1. Terminal? is replaced by Cutoff? 

2. Utility is replaced by Eval 

 

 

4-ply lookahead is a hopeless chess player! 

– 4-ply ≈ human novice 

– 8-ply ≈ typical PC, human master 

– 12-ply ≈ Deep Blue, Kasparov 



Stochastic Single-Player 

• What if we don’t know what the 
result of an action will be? E.g., 
– In solitaire, shuffle is unknown 
– In minesweeper, mine locations 
– In pacman, ghosts! 

 
• Can do expectimax search 

– Chance nodes, like actions except 
the environment controls the action 
chosen 

– Calculate utility for each node 
– Max nodes as in search 
– Chance nodes take average 

(expectation) of value of children 
 

10 4 5 7 

max 

average 

31 



Stochastic Two-Player 

• E.g. backgammon 

• Expectiminimax (!) 

– Environment is an 

extra player that moves 

after each agent 

– Chance nodes take 

expectations, otherwise 

like minimax 

 

 

32 



Minimax for nondeterministic 

games 

3 



Stochastic Two-Player 

• Dice rolls increase b: 21 possible rolls 
with 2 dice 
– Backgammon  20 legal moves 

• As depth increases, probability of 
reaching a given node shrinks 
– So value of lookahead is diminished 

– So limiting depth is less damaging 

– But pruning is less possible… 

• TDGammon uses depth-2 search + 
very good eval function + 
reinforcement learning: world-
champion level play 

34 



Summary 

• Games are fun to work on! 

• They illustrate several important points 

about AI 

• perfection is unattainable  must 

approximate 

• good idea to think about what to think 

about 


