
CS 2710 1

Informed Search and Beyond

Chapters 3 (3.5-3.7), 4 (4.1)

CS 2710 – Informed Search 2

Introduction

• Uninformed searches – good building blocks

for learning about search

• But vastly inefficient

• Can we do better?

CS 2710 – Informed Search 3

(Quick Partial) Review

 Previous algorithms differed in how to select
next node for expansion eg:

 Breadth First

 Fringe nodes sorted old -> new

 Depth First

 Fringe nodes sorted new -> old

 Uniform cost

 Fringe nodes sorted by path cost: small -> big

 Used little (no) “external” domain knowledge

CS 2710 – Informed Search 4

Overview

 Heuristic Search

 Best-First Search Approach

 Greedy

 A*

 Heuristic Functions

 Local Search and Optimization

 Hill-climbing

 Simulated Annealing

CS 2710 – Informed Search 5

Informed Searching

 An informed search strategy uses knowledge
beyond the definition of the problem

 The knowledge is embodied in an evaluation
function f(n)

CS 2710 – Informed Search 6

Best-First Search

 An algorithm in which a node is selected for
expansion based on an evaluation function
f(n)

 Fringe nodes ordered by f(n)

 Traditionally the node with the lowest evaluation
function is selected

 Not an accurate name…expanding the best node
first would be a straight march to the goal.

 Choose the node that appears to be the best

CS 2710 – Informed Search 7

Best-First Search

 Remember: Uniform cost search

 F(n) = g(n)

 Best-first search:

 F(n) = h(n)

 Later, a-star search:

 F(n) = g(n) + h(n)

CS 2710 – Informed Search 8

Best-First Search (cont.)

 Some BFS algorithms also include the notion of a
heuristic function h(n)

 h(n) = estimated cost of the cheapest path from
node n to a goal node

 Best way to include informed knowledge into a
search

 Examples:
 How far is it from point A to point B

 How much time will it take to complete the rest of the
task at current node to finish

CS 2710 – Informed Search 9

Greedy Best-First Search

 Expands node estimated to be closest to the
goal

 f(n) = h(n)

 Consider the route finding problem.

 Can we use additional information to avoid
costly paths that lead nowhere?

 Consider using the straight line distance (SLD)

CS 2710 – Informed Search 10

Route Finding

374

253
366

329

CS 2710 – Informed Search 11

Route Finding: Greedy Best First

Arad f(n) = 366

CS 2710 – Informed Search 12

Route Finding: Greedy Best First

Arad f(n) = 366

Timisoara Sibiu Zerind 374 329 253

CS 2710 – Informed Search 13

Route Finding: Greedy Best First

Arad f(n) = 366

Timisoara Sibiu Zerind 374 329 253

Arad Rimnicu Vilcea Oradea Fagaras 366 176 380 193

CS 2710 – Informed Search 14

Route Finding: Greedy Best First

Arad f(n) = 366

Timisoara Sibiu Zerind 374 329 253

Arad Rimnicu Vilcea Oradea Fagaras 366 176 380 193

Bucharest Sibiu 0 253

CS 2710 – Informed Search 15

Exercise

So is Arad->Sibiu->Fagaras->Bucharest optimal?

CS 2710 – Informed Search 16

Greedy Best-First Search

 Not optimal.

 Not complete.

 Could go down a path and never return to try another.

 e.g., Iasi  Neamt  Iasi  Neamt  …

 Space Complexity

 O(bm) – keeps all nodes in memory

 Time Complexity

 O(bm) (but a good heuristic can give a dramatic improvement)

CS 2710 – Informed Search 17

Heuristic Functions

• Example: 8-Puzzle

– Average solution cost for a random
puzzle is 22 moves

– Branching factor is about 3

• Empty tile in the middle -> four moves

• Empty tile on the edge -> three moves

• Empty tile in corner -> two moves

– 322 is approx 3.1e10

• Get rid of repeated states

• 181,440 distinct states

CS 2710 – Informed Search 18

Heuristic Functions

• h1 = number of misplaced tiles

• h2 = sum of distances of tiles to goal position.

CS 2710 – Informed Search 19

Heuristic Functions

 h1 = 7

 h2 = 4+0+3+3+1+0+2+1 = 14

CS 2710 – Informed Search 20

Admissible Heuristics

 A heuristic function h(n) is admissible if it never
overestimates the cost to reach the goal from n

 Is h1 (#of displaced tiles)

 admissible?

 Is h2 (Manhattan distance)

 admissible?

CS 2710 – Informed Search 21

Dominance

 If h2(n) ≥ h1(n) for all n (both admissible)
 then h2 dominates h1

 h2 is better for search

 Typical search costs (average number of nodes expanded):

 d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

 d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes



CS 2710 – Informed Search 22

Heuristic Functions

 Heuristics are often obtained from relaxed
problem

 Simplify the original problem by removing
constraints

 The cost of an optimal solution to a relaxed
problem is an admissible heuristic.

CS 2710 – Informed Search 23

8-Puzzle

 Original

 A tile can move from A to B if A is horizontally or
vertically adjacent to B and B is blank.

 Relaxations

 Move from A to B if A is adjacent to B(remove “blank”)

 h2 by moving each tile in turn to destination

 Move from A to B (remove “adjacent” and “blank”)

 h1 by simply moving each tile directly to destination

CS 2710 – Informed Search 24

How to Obtain Heuristics?

 Ask the domain expert (if there is one)

 Solve example problems and generalize your experience on which
operators are helpful in which situation (particularly important for
state space search)

 Try to develop sophisticated evaluation functions that measure the
closeness of a state to a goal state (particularly important for state
space search)

 Run your search algorithm with different parameter settings trying to
determine which parameter settings of the chosen search algorithm
are “good” to solve a particular class of problems.

 Write a program that selects “good parameter” settings based on
problem characteristics (frequently very difficult) relying on machine
learning

CS 2710 – Informed Search 25

A* Search

 The greedy best-first search does not
consider how costly it was to get to a node.
 f(n) = h(n)

 Idea: avoid expanding paths that are already
expensive

 Combine g(n), the cost to reach node n, with
h(n)
 f(n) = g(n) + h(n)

 estimated cost of cheapest solution through n

CS 2710 – Informed Search 26

A* Search

 When h(n) = actual cost to goal

 Only nodes in the correct path are expanded

 Optimal solution is found

 When h(n) < actual cost to goal

 Additional nodes are expanded

 Optimal solution is found

 When h(n) > actual cost to goal

 Optimal solution can be overlooked

CS 2710 – Informed Search 27

A* Search

 Complete
 Yes, unless there are infinitely many nodes with f <= f(G)

 Time
 Exponential in [relative error of h x length of soln]

 The better the heuristic, the better the time
 Best case h is perfect, O(d)

 Worst case h = 0, O(bd) same as BFS

 Space
 Keeps all nodes in memory and save in case of repetition

 This is O(bd) or worse

 A* usually runs out of space before it runs out of time

 Optimal
 Yes, cannot expand fi+1 unless fi is finished

CS 2710 – Informed Search 28

Route Finding

CS 2710 – Informed Search 29

A* Example

CS 2710 – Informed Search 30

A* Search

Arad f(n) = 0 + 366

Timisoara Sibiu Zerind 449 447 393
=140+253

Arad Rimnicu Vilcea Oradea Fagaras 646 415 671 413

Things are
different

now!

CS 2710 – Informed Search 31

A* Search Continued

Arad Rimnicu Vilcea Oradea Fagaras 646 415 671 413

591

Sibiu Bucharest

450

Pitesti Sibiu Craiova
526 417 553

Craiova
615

Rimnicu Vilcea

607

Bucharest

418

CS 2710 – Informed Search 32

Local Search / Optimization

 Idea is to find the best state.

 We don’t really care how to get to the best
state, just that we get there.

 The best state is defined according to an
objective function
 Measures the “fitness” of a state.

 Problem: Find the optimal state
 The one that maximizes (or minimizes) the

objective function.

CS 2710 – Informed Search 33

State Space Landscapes

Objective Function

State Space

shoulder

global
max

local
max

CS 2710 – Informed Search 34

Problem Formulation

 Complete-state formulation

 Start with an approximate solution and perturb

 n-queens problem

 Place n queens on a board so that no queen is
attacking another queen.

CS 2710 – Informed Search 35

Problem Formulation

 Initial State: n queens placed randomly on
the board, one per column.

 Successor function: States that obtained by
moving one queen to a new location in its
column.

 Heuristic/objective function: The number of
pairs of attacking queens.

CS 2710 – Informed Search 36

n-Queens

5

5

4

3

2

3

4

5

2

4

3

4

3

3

2 3

5

4

2

3

1

4

2

2

CS 2710 – Informed Search 37

Local Search Algorithms

 Hill climbing

 Simulated annealing

 Local beam search

 Genetic Algorithms

CS 2710 – Informed Search 38

Hill Climbing (or Descent)

Objective Function

State Space

CS 2710 – Informed Search 39

Hill Climbing Problems

“like climbing Everest in fog with amnesia”

Objective Function

State Space

CS 2710 – Informed Search 40

n-Queens

5

5

4

3

2

3

4

5

2

4

3

4

3

3

2 3

5

4

2

3

1

4

2

2

What happens if we move 3rd queen?

CS 2710 – Informed Search 41

Possible Improvements

 Stochastic hill climbing

 Choose at random from uphill moves

 Probability of move could be influenced by steepness

 First-choice hill climbing

 Generate successors at random until one is better than
current.

 Random-restart

 Execute hill climbing several times, choose best result.

 If p is probability of a search succeeding, then expected
number of restarts is 1/p.

CS 2710 – Informed Search 42

Simulated Annealing

 Similar to stochastic hill climbing

 Moves are selected at random

 If a move is an improvement, accept

 Otherwise, accept with probability less than 1.

 Probability gets smaller as time passes and
by the amount of “badness” of the move.

