
CS 2710 1

Informed Search and Beyond

Chapters 3 (3.5-3.7), 4 (4.1)

CS 2710 – Informed Search 2

Introduction

• Uninformed searches – good building blocks

for learning about search

• But vastly inefficient

• Can we do better?

CS 2710 – Informed Search 3

(Quick Partial) Review

 Previous algorithms differed in how to select
next node for expansion eg:

 Breadth First

 Fringe nodes sorted old -> new

 Depth First

 Fringe nodes sorted new -> old

 Uniform cost

 Fringe nodes sorted by path cost: small -> big

 Used little (no) “external” domain knowledge

CS 2710 – Informed Search 4

Overview

 Heuristic Search

 Best-First Search Approach

 Greedy

 A*

 Heuristic Functions

 Local Search and Optimization

 Hill-climbing

 Simulated Annealing

CS 2710 – Informed Search 5

Informed Searching

 An informed search strategy uses knowledge
beyond the definition of the problem

 The knowledge is embodied in an evaluation
function f(n)

CS 2710 – Informed Search 6

Best-First Search

 An algorithm in which a node is selected for
expansion based on an evaluation function
f(n)

 Fringe nodes ordered by f(n)

 Traditionally the node with the lowest evaluation
function is selected

 Not an accurate name…expanding the best node
first would be a straight march to the goal.

 Choose the node that appears to be the best

CS 2710 – Informed Search 7

Best-First Search

 Remember: Uniform cost search

 F(n) = g(n)

 Best-first search:

 F(n) = h(n)

 Later, a-star search:

 F(n) = g(n) + h(n)

CS 2710 – Informed Search 8

Best-First Search (cont.)

 Some BFS algorithms also include the notion of a
heuristic function h(n)

 h(n) = estimated cost of the cheapest path from
node n to a goal node

 Best way to include informed knowledge into a
search

 Examples:
 How far is it from point A to point B

 How much time will it take to complete the rest of the
task at current node to finish

CS 2710 – Informed Search 9

Greedy Best-First Search

 Expands node estimated to be closest to the
goal

 f(n) = h(n)

 Consider the route finding problem.

 Can we use additional information to avoid
costly paths that lead nowhere?

 Consider using the straight line distance (SLD)

CS 2710 – Informed Search 10

Route Finding

374

253
366

329

CS 2710 – Informed Search 11

Route Finding: Greedy Best First

Arad f(n) = 366

CS 2710 – Informed Search 12

Route Finding: Greedy Best First

Arad f(n) = 366

Timisoara Sibiu Zerind 374 329 253

CS 2710 – Informed Search 13

Route Finding: Greedy Best First

Arad f(n) = 366

Timisoara Sibiu Zerind 374 329 253

Arad Rimnicu Vilcea Oradea Fagaras 366 176 380 193

CS 2710 – Informed Search 14

Route Finding: Greedy Best First

Arad f(n) = 366

Timisoara Sibiu Zerind 374 329 253

Arad Rimnicu Vilcea Oradea Fagaras 366 176 380 193

Bucharest Sibiu 0 253

CS 2710 – Informed Search 15

Exercise

So is Arad->Sibiu->Fagaras->Bucharest optimal?

CS 2710 – Informed Search 16

Greedy Best-First Search

 Not optimal.

 Not complete.

 Could go down a path and never return to try another.

 e.g., Iasi Neamt Iasi Neamt …

 Space Complexity

 O(bm) – keeps all nodes in memory

 Time Complexity

 O(bm) (but a good heuristic can give a dramatic improvement)

CS 2710 – Informed Search 17

Heuristic Functions

• Example: 8-Puzzle

– Average solution cost for a random
puzzle is 22 moves

– Branching factor is about 3

• Empty tile in the middle -> four moves

• Empty tile on the edge -> three moves

• Empty tile in corner -> two moves

– 322 is approx 3.1e10

• Get rid of repeated states

• 181,440 distinct states

CS 2710 – Informed Search 18

Heuristic Functions

• h1 = number of misplaced tiles

• h2 = sum of distances of tiles to goal position.

CS 2710 – Informed Search 19

Heuristic Functions

 h1 = 7

 h2 = 4+0+3+3+1+0+2+1 = 14

CS 2710 – Informed Search 20

Admissible Heuristics

 A heuristic function h(n) is admissible if it never
overestimates the cost to reach the goal from n

 Is h1 (#of displaced tiles)

 admissible?

 Is h2 (Manhattan distance)

 admissible?

CS 2710 – Informed Search 21

Dominance

 If h2(n) ≥ h1(n) for all n (both admissible)
 then h2 dominates h1

 h2 is better for search

 Typical search costs (average number of nodes expanded):

 d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

 d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

CS 2710 – Informed Search 22

Heuristic Functions

 Heuristics are often obtained from relaxed
problem

 Simplify the original problem by removing
constraints

 The cost of an optimal solution to a relaxed
problem is an admissible heuristic.

CS 2710 – Informed Search 23

8-Puzzle

 Original

 A tile can move from A to B if A is horizontally or
vertically adjacent to B and B is blank.

 Relaxations

 Move from A to B if A is adjacent to B(remove “blank”)

 h2 by moving each tile in turn to destination

 Move from A to B (remove “adjacent” and “blank”)

 h1 by simply moving each tile directly to destination

CS 2710 – Informed Search 24

How to Obtain Heuristics?

 Ask the domain expert (if there is one)

 Solve example problems and generalize your experience on which
operators are helpful in which situation (particularly important for
state space search)

 Try to develop sophisticated evaluation functions that measure the
closeness of a state to a goal state (particularly important for state
space search)

 Run your search algorithm with different parameter settings trying to
determine which parameter settings of the chosen search algorithm
are “good” to solve a particular class of problems.

 Write a program that selects “good parameter” settings based on
problem characteristics (frequently very difficult) relying on machine
learning

CS 2710 – Informed Search 25

A* Search

 The greedy best-first search does not
consider how costly it was to get to a node.
 f(n) = h(n)

 Idea: avoid expanding paths that are already
expensive

 Combine g(n), the cost to reach node n, with
h(n)
 f(n) = g(n) + h(n)

 estimated cost of cheapest solution through n

CS 2710 – Informed Search 26

A* Search

 When h(n) = actual cost to goal

 Only nodes in the correct path are expanded

 Optimal solution is found

 When h(n) < actual cost to goal

 Additional nodes are expanded

 Optimal solution is found

 When h(n) > actual cost to goal

 Optimal solution can be overlooked

CS 2710 – Informed Search 27

A* Search

 Complete
 Yes, unless there are infinitely many nodes with f <= f(G)

 Time
 Exponential in [relative error of h x length of soln]

 The better the heuristic, the better the time
 Best case h is perfect, O(d)

 Worst case h = 0, O(bd) same as BFS

 Space
 Keeps all nodes in memory and save in case of repetition

 This is O(bd) or worse

 A* usually runs out of space before it runs out of time

 Optimal
 Yes, cannot expand fi+1 unless fi is finished

CS 2710 – Informed Search 28

Route Finding

CS 2710 – Informed Search 29

A* Example

CS 2710 – Informed Search 30

A* Search

Arad f(n) = 0 + 366

Timisoara Sibiu Zerind 449 447 393
=140+253

Arad Rimnicu Vilcea Oradea Fagaras 646 415 671 413

Things are
different

now!

CS 2710 – Informed Search 31

A* Search Continued

Arad Rimnicu Vilcea Oradea Fagaras 646 415 671 413

591

Sibiu Bucharest

450

Pitesti Sibiu Craiova
526 417 553

Craiova
615

Rimnicu Vilcea

607

Bucharest

418

CS 2710 – Informed Search 32

Local Search / Optimization

 Idea is to find the best state.

 We don’t really care how to get to the best
state, just that we get there.

 The best state is defined according to an
objective function
 Measures the “fitness” of a state.

 Problem: Find the optimal state
 The one that maximizes (or minimizes) the

objective function.

CS 2710 – Informed Search 33

State Space Landscapes

Objective Function

State Space

shoulder

global
max

local
max

CS 2710 – Informed Search 34

Problem Formulation

 Complete-state formulation

 Start with an approximate solution and perturb

 n-queens problem

 Place n queens on a board so that no queen is
attacking another queen.

CS 2710 – Informed Search 35

Problem Formulation

 Initial State: n queens placed randomly on
the board, one per column.

 Successor function: States that obtained by
moving one queen to a new location in its
column.

 Heuristic/objective function: The number of
pairs of attacking queens.

CS 2710 – Informed Search 36

n-Queens

5

5

4

3

2

3

4

5

2

4

3

4

3

3

2 3

5

4

2

3

1

4

2

2

CS 2710 – Informed Search 37

Local Search Algorithms

 Hill climbing

 Simulated annealing

 Local beam search

 Genetic Algorithms

CS 2710 – Informed Search 38

Hill Climbing (or Descent)

Objective Function

State Space

CS 2710 – Informed Search 39

Hill Climbing Problems

“like climbing Everest in fog with amnesia”

Objective Function

State Space

CS 2710 – Informed Search 40

n-Queens

5

5

4

3

2

3

4

5

2

4

3

4

3

3

2 3

5

4

2

3

1

4

2

2

What happens if we move 3rd queen?

CS 2710 – Informed Search 41

Possible Improvements

 Stochastic hill climbing

 Choose at random from uphill moves

 Probability of move could be influenced by steepness

 First-choice hill climbing

 Generate successors at random until one is better than
current.

 Random-restart

 Execute hill climbing several times, choose best result.

 If p is probability of a search succeeding, then expected
number of restarts is 1/p.

CS 2710 – Informed Search 42

Simulated Annealing

 Similar to stochastic hill climbing

 Moves are selected at random

 If a move is an improvement, accept

 Otherwise, accept with probability less than 1.

 Probability gets smaller as time passes and
by the amount of “badness” of the move.

