L Informed Search and Beyond

Chapters 3 (3.5-3.7), 4 (4.1)

CS 2710

M 1 Introduction

» Uninformed searches — good building blocks
for learning about search

 But vastly inefficient
« Can we do better?

CS 2710 — Informed Search

q I(Quick Partial) ReV|eW

|
Previous algorithms differed in how to select
next node for expansion eg:

Breadth First
Fringe nodes sorted old -> new

Depth First
Fringe nodes sorted new -> old

Uniform cost
Fringe nodes sorted by path cost: small -> big

Used little (no) “external” domain knowledge

CS 2710 — Informed Search 3

W 10verview

Heuristic Search

Best-First Search Approach
Greedy

A*
Heuristic Functions
Local Search and Optimization
Hill-climbing
Simulated Annealing

CS 2710 — Informed Search

q | Informed Searching

An /nformed search strategy uses knowledge
beyond the definition of the problem

The knowledge is embodied in an evaluation
function f(n)

CS 2710 — Informed Search 5

q | Best-First Search

|
An algorithm in which a node is selected for
expansion based on an evaluation function
f(n)

Fringe nodes ordered by f(n)

Traditionally the node with the lowest evaluation
function is selected

Not an accurate name...expanding the best node
first would be a straight march to the goal.

Choose the node that appears to be the best

CS 2710 — Informed Search 6

q | Best-First Search

|
Remember: Uniform cost search

F(n) = g(n)
Best-first search:
F(n) = h(n)
Later, a-star search:
F(n) = g(n) + h(n)

CS 2710 — Informed Search

q | Best-First Search (cont.)

Some BFS algorithms also include the notion of a
heuristic function h(n)

h(n) = estimated cost of the cheapest path from
node n to a goal node

Best way to include informed knowledge into a
search

Examples:
How far is it from point A to point B

How much time will it take to complete the rest of the
task at current node to finish

CS 2710 — Informed Search

® 1Greedy Best-First Search

|
Expands node estimated to be closest to the
goal

f(n) = h(n)
Consider the route finding problem.

Can we use additional information to avoid
costly paths that lead nowhere?

Consider using the straight line distance (SLD)

CS 2710 — Informed Search

q | Route Finding
I

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Lasi

Lugoj
Mehadia
Neamt
Oradea

. Pitesti
[AVaslui Rimnicu Vilcea
Sibin
Timisoara
Urziceni
Vaslui
Zerind

FJHirsova

FIMehadia

*Bucharest
Dobreta [

Eforie
[] Giurgiu

CS 2710 — Informed Search

Straight—line distance

366
0
160
242
161
178
151

i
s

244
241
23
380
a8
193
253
329
20
199
374

10

1||Route Finding: Greedy Best First
|

- f(n) = 366

CS 2710 — Informed Search

11

‘.IIRoute Finding: Greedy Best First
oy 2

f(n) = 366

374

CS 2710 — Informed Search

12

1IIRoute Finding: Greedy Best First
L

f(n) = 366

329 374

176 380 193

CS 2710 — Informed Search 13

1IIRoute Finding: Greedy Best First
- —

f(n) = 366

329 374

176 380 193

0 253

CS 2710 — Informed Search 14

| Exercise

Sibiu

99 Fagaras

118

Dobreta []

Eforie

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giuregiu
Hirsova
Lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibin
Timisoara
Urziceni
Vaslui
Zerind

So is Arad->Sibiu->Fagaras->Bucharest optimal?

CS 2710 — Informed Search

366
0
160
242
&l
178

e
i

15

q | Greedy Best-First Search

I
Not optimal.

Not complete.
Could go down a path and never return to try another.

e.g., Iasi > Neamt - Iasi > Neamt - ...
Space Complexity
O(b™) — keeps all nodes in memory

Time Complexity
O(b™) (but a good heuristic can give a dramatic improvement)

CS 2710 — Informed Search 16

q | Heuristic Functions

I
« Example: 8-Puzzle

— Average solution cost for a random
puzzle is 22 moves

— Branching factor is about 3
« Empty tile in the middle -> four moves
« Empty tile on the edge -> three moves
« Empty tile in corner -> two moves

— 322 s approx 3.1e10
« (et rid of repeated states
« 181,440 distinct states

CS 2710 — Informed Search

7 2 4

S 6

8 3 1
Start State

1 2 3

4 5 6

7 8

Goal State

17

q | Heuristic Functions

7 2 4 1 2

5 6 4 5

8 3 1 7 8
Start State Goal State

* h1l = number of misplaced tiles

* h2 = sum of distances of tiles to goal position.

CS 2710 — Informed Search

18

M 1 Heuristic Functions

N1 =7/
N2 = 44+0+3+3+1+0+2+1 = 14

7 2 4 1 2 3
S 6 4 5 6
8 3 1 7 8

Start Stat Goal S

CS 2710 — Informed Search

19

q | Admissible Heuristics

I
A heuristic function h(n) is admissible if it never
overestimates the cost to reach the goal from n

Is hl (#of displaced tiles)
admissible?

Is h2 (Manhattan distance)
admissible?

CS 2710 — Informed Search

20

q 1 Dominance

I

If A,(n) = h,(n)for all n (both admissible)
then A, dominates A,
h, is better for search

Typical search costs (average number of nodes expanded):

d=12 1IDS = 3,644,035 nodes
A*éhlg = 227 nodes
A*(h,) = 73 nodes

=24 IDS = too many nodes
A*fhlg = 39,135 nodes
A*(h,) = 1,641 nodes

CS 2710 — Informed Search 21

q | Heuristic Functions

|
Heuristics are often obtained from relaxed
problem

Simplify the original problem by removing
constraints

The cost of an optimal solution to a relaxed
problem is an admissible heuristic.

CS 2710 — Informed Search

22

q | 8-Puzzle

I
Original
A tile can move from Ato Bif Ais horizontally or
vertically adjacent to Band Bis blank.
Relaxations

Move from Ato Bif Ais adjacent to Bremove "biank”)
h2 by moving each tile in turn to destination

Move from Ato B (remove “adjacent” and "blank”)
h1 by simply moving each tile directly to destination

CS 2710 — Informed Search 23

M k0w to, Obtain, Heuristics?

Ask the domain expert (if there is one)

Solve example problems and generalize your experience on which
operators are helpful in which situation (particularly important for
state space search)

Try to develop sophisticated evaluation functions that measure the
closeness of a state to a goal state (particularly important for state
space search)

Run your search algorithm with different parameter settings trying to
determine which parameter settings of the chosen search algorithm
are “good” to solve a particular class of problems.

Write a program that selects “good parameter” settings based on
problem characteristics (frequently very difficult) relying on machine
learning

CS 2710 — Informed Search 24

q | A* Search

The greedy best-first search does not
consider how costly it was to get to a node.

f(n) = h(n)

Idea: avoid expanding paths that are already
expensive

Combine g(n), the cost to reach node n, with
h(n)

f(n) = g(n) + h(n)

estimated cost of cheapest solution through n

CS 2710 — Informed Search 25

q | A* Search

|
When h(n) = actual cost to goal

Only nodes in the correct path are expanded
Optimal solution is found

When h(n) < actual cost to goal
Additional nodes are expanded
Optimal solution is found

When h(n) > actual cost to goal
Optimal solution can be overlooked

CS 2710 — Informed Search

26

q | A* Search

I
Complete

Yes, unless there are infinitely many nodes with f <= f(G)
Time
Exponential in [relative error of h x length of soln]

The better the heuristic, the better the time
Best case h is perfect, O(d)
Worst case h = 0, O(b%) same as BFS

Space
Keeps all nodes in memory and save in case of repetition
This is O(b%) or worse
A* usually runs out of space before it runs out of time
Optimal
Yes, cannot expand f;,, unless f; is finished

CS 2710 — Informed Search 27

® 1Route Finding
|

118 [JVaslui

Pitesti

["JMehadia

75

Dobreta []
Eforie

CS 2710 — Informed Search

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giuregiu
Hirsova
Lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibin
Timisoara
Urziceni
Vaslui
Zerind

366

0
160
242
161
178
151

i
s

244
241
23
380
08
193
253
329
20
199
374

28

1A* Example

CS 2710 — Informed Search

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
[asi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Lerind

29

1|IA* Search

h;;... -

f(n) = 0 + 366

393
=140+253

447 449

415

CS 2710 — Informed Search

1|A* Search Continued
n _

418 615 607

CS 2710 — Informed Search 31

q | Local Search / Optimization

|
Idea is to find the best state.

We don't really care how to get to the best
state, just that we get there.

The best state is defined according to an
objective function
Measures the “fitness” of a state.

Problem: Find the optimal state

The one that maximizes (or minimizes) the
objective function.

CS 2710 — Informed Search 32

1||State Space Landscapes
L

Objective Function

» State Space

CS 2710 — Informed Search 33

q | Problem Formulation

|
Complete-state formulation

Start with an approximate solution and perturb

n-queens problem

Place n queens on a board so that no queen is
attacking another queen.

CS 2710 — Informed Search

34

q 1 Problem Formulation

Initial State: n queens placed randomly on
the board, one per column.

Successor function: States that obtained by
moving one queen to a new location in its
column.

Heuristic/objective function: The number of
pairs of attacking queens.

CS 2710 — Informed Search 35

CS 2710 — Informed Search

36

q | Local Search Algorithms

|
Hill climbing

Simulated annealing

CS 2710 — Informed Search

37

® 1Hill Climbing (or Descent)

Objective Function

» State Space
CS 2710 — Informed Search 38

Hill Climbing Problems

| “like climbing Everest in fog with amnesia”
|

Objective Function

» State Space
CS 2710 — Informed Search 39

i.lln-Queens

- B

W
4

W
W [W
s 20 5[5

What happens if we move 3rd queen?

CS 2710 — Informed Search

W 1Possible Improvements

I
Stochastic hill climbing

Choose at random from uphill moves
Probability of move could be influenced by steepness
First-choice hill climbing

Generate successors at random until one is better than
current.

Random-restart
Execute hill climbing several times, choose best result.

If p is probability of a search succeeding, then expected
number of restarts is 1/p.

CS 2710 — Informed Search 41

B 1Simulated Annealing

I

Similar to stochastic hill climbing
Moves are selected at random
If @ move is an improvement, accept
Otherwise, accept with probability less than 1.

Probability gets smaller as time passes and
by the amount of “badness” of the move.

CS 2710 — Informed Search 42

