Chapter 22

Natural Language Processing

Why should agents do NLP?

- Knowledge acquisition from spoken and written language artifacts (e.g. on the web)
 - This chapter
 - Natural language is messy!

- Communicate with humans
 - Chapter 23

Outline

- Language Models
 - Predict the probability distribution of language expressions

- Information-Seeking Tasks
 - Text Classification
 - Information Retrieval
 - Information Extraction

Language Models

- Formal languages (e.g. Python, Logic)
 - Grammar (generative)
 - Semantics
- Natural languages (e.g. English)
 - Grammaticality is less clear
 - * To be not invited is sad
 - Ambiguity at many levels (syntax, semantics, ...)
 - I saw the man with the telescope
 - He saw her duck
 - Suggests modeling via probability distributions
 - What is the probability that a random sentence would be a string of words?
 - What is the probability distribution over possible meanings for a sentence?

N-Gram Models

N-Gram

- a sequence (of some unit characters, words, etc.) of length n
- Unigram, Bigram and Trigrams for n= 1, 2, and 3

N-Gram Model

- probability distribution of n-unit sequences
- Markov chain of order n -1
 - the probability of a unit depends only on some of the immediately preceding units

N-gram character models

- P(c_{1:n}) is the probability of a sequence of N characters c₁ through c_N
 - Typically corpus-based (uses a body of text)
 - -P("the") = .03
 - -P("zgq") = .00000000002
- Application: language identification
 - Corpus: P(Text | Language) (trigrams)
 - Language Identification use Bayes Rule!
- Application: named—entity recognition
 - "ex " -> drug name
 - Can handle unseen words!

Smoothing

- What do we do about zero (or low) counts in a training corpus?
 - Sequences with count zero are assigned a small nonzero probability (support generalization)
 - Need to adjust other counts downward, so probability still sums to 1
- Add one smoothing (1/(n+2))
- Backoff (e.g. if no trigram, use bigram)
- Many others in NLP course
- Just like ML, is it better to improve smoothing methods, or to get more data???

Evaluation

- Just like ML, cross-validation with train/validate/test data
- Just like ML, many metrics
 - extrinsic e.g. language identification
 - instrinsic perplexity

N-gram word models

- Much larger "vocabulary" of units
- Since units are open, out of vocabulary becomes a problem
- "Word" needs to be defined precisely
- Common in speech recognition

Text Classification

- Our spam filter from probability chapters (now think language modeling), can also be recast as supervised learning
 - Input: text
 - Output: one of a set of predefined classes
 - Features: NLP-based (e.g. word and character n-grams)
 - Bag of words: unigrams
 - Feature selection

Information Retrieval

- Corpus of "documents"
- Queries in a language
- Result set (relevant documents)
- Presentation of result set

Applications: Libraries, Search engines

IR Scoring Functions

- An alternative to boolean models (relevant or not), that assigns a numeric score
 - Useful for ranking in presentation
- BM25 function linear weighted combination of score for each term in the query
 - TF (term frequency)
 - IDF (inverse document frequency of the term)
 - Document length

IR System Evaluation

	In result set	Not in result set
Relevant	30	20
Not relevant	10	40

Precision

 The proportion of documents in the result set that are indeed relevant (3/4)

Recall

- The proportion of relevant documents that are in the result set (3/5)
- Hard for www
- Also useful for evaluating supervised ML

IR Refinements

- Beyond words, via NLP
 - Stemming (couch = couches)
 - Semantics (couch = sofa)
 - Usually helps recall at expense of precision
- Google's PageRank and HITS web oriented
- Question Answering "towards" NLP (local research)
 - Web IR for open domain
 - Fall 2010 Al Magazine
 - E.g., CYC, IBM's jeopardy program
 - Again, tradeoff between deeper algorithms (here NLP) versus just more data

Information Extraction

 "Skimming" a text and looking for occurrences of a particular class of object and relationships among objects

Finite-State Automata

- FSAs for attribute-based extraction
 - price
- Cascaded FSTs for relational extraction
 - Multiple attributes and their relations
- Good for restricted, formulaic domains (WSJ merger reports)

Probabilistic (not rule-based) Models

- HMMs (chapter 15) for noisy and/or varied texts
 - generative (but don't need)
- CRFs
 - discriminitive

Corpus-Based Ontology Extraction

 Acquiring a KB, in contrast to finding the speaker in a talk announcement

- IS-A hierarchy constructed from high precision query templates
 - NounPhrase such as NounPhrase
 - Forces such as gravity and *
- Automated template construction
- Both sensitive to noise propagation

Machine Reading

- Rather than bootstrapping, towards no human input of any kind
 - NELL: Never-Ending Language Learning
 - http://rtw.ml.cmu.edu/rtw/
 - Read the Web" is a research project that attempts to create a computer system that learns over time to read the web. Since January 2010, our computer system called NELL (Never-Ending Language Learner) has been running continuously, attempting to perform two tasks each day:
 - First, it attempts to "read," or extract facts from text found in hundreds of millions of web pages (e.g., playsInstrument(George_Harrison, guitar)).
 - Second, it attempts to improve its reading competence, so that tomorrow it can extract more facts from the web, more accurately.