Single vs. Multi-cycle MIPS

Single Clock Cycle Length

* Suppose we have

— Fetch 2ns
— Decode 2ns
— Register read 2ns
— Register write 2ns
— Memory read 2ns
— Memory write 2ns
— ALU 2ns

* What is the clock cycle length?

4/2/15

Single Cycle Length

* Worst case propagation delay involves Load
— Fetch, Decode/Read regs, ALU, Read mem, Write regs

* Thus, cycle length is:
— 2ns + 2ns + 2ns + 2ns + 2ns = 10ns

— Decode/register read are done simultaneously

— Clock cycle rate is 1s / 10ns = 100 MHz

* Single cycle design: ALL instruction types take 10ns!

Single Cycle Length

1 One clock cycle for all steps

\ A—

<

Decode | ALU .
Load Fetch Read Eff. 'I\R/Ieean; V\R{zte
Regs Addr. &
Decode .
Arithmetic Fetch Read ALU Rl
Reg
Regs
Decode ALU
Branch, Jump Fetch Read o
Regs
Decode | ALU Mem
Store Fetch Read Eff. Write
Regs Addr.

4/2/15

Single Cycle Length

How long does an Add take?
— 10ns —it’s a single cycle implementation

— But notice add doesn’t use the memory

— It could be done in 8ns (fetch, decode/read registers, ALU,
write registers)

How about a Branch? (done in 6 ns but takes 10 ns)

How about a Jump? (done in 6 ns but takes 10 ns)

How about a Store? (done in 8 ns but takes 10 ns)

Load

Arithmetic

Branch, Jump

Store

Can we do better?

One clock cycle

\ A—

D ALU Mem Write 10 ns
Fetch Read Eff. Read Re
Regs Addr. &
Decode .
Fetch Read ALU Write 8 ns but 10 ns cycle
Reg
Regs
Decode
ALU
Fetch | Read C 6 ns but 10 ns cycle
omp.
Regs
Decode | ALU M
Fetch Read Eff. We:n 8 ns but 10 ns cycle
Regs Addr. rite

4/2/15

Can we do better?

* Multi-cycle implementation
— Divide steps into their own shorter (faster) clock cycles

* Fetch: 1 cycle
* Decode/read registers: 1 cycle
* ALU: 1 cycle
* Memory read/write: 1 cycle
* Write registers: 1 cycle

* Load takes 5 cycles, add takes 4 cycles, branch takes

3 cycles (comparison done in 3™ cycle), jump takes 3
cycles and store takes 4 cycles

Can we do better?

1 One clock cycle

\ A—

Decode ALU

Load | Fetch | Read Eff. 'I\R/Ieean; V\R{zte
Regs | Addr. 8
Decode)
Arithmetic Fetch Read ALU woliE - >
Reg
Regs

Decode ALU Wasted time
Branch, Jump Fetch Read

»N
N

e Comp.
Decode | ALU Mem
Store Fetch Read Eff. Write < >
Regs Addr.

4/2/15

Load

Arithmetic

Branch, Jump

Store

Can we do better?

Single cycle: One clock cycle for all steps

\ A—

<

&
<

Multi-cycle: One clock cycle for each step

Decode | ALU .
Fetch Read Eff. 'I\R/Ieean; V\R{zte
Regs Addr. g
1
Decode .
i 1
Fetch | Read | ALy | ‘Vrite I
Reg 1
Regs :
1
Decode .
Fetch Read Cﬁ:-nu :
Regs p: :
1
1
Decode | ALU Mem 1
Fetch Read Eff. Write :
Regs Addr. :
1
1
1
1
1
]

A 4

5 cycles

4 cycles

3 cycles

4 cycles

* What is the clock cycle length for multi-cycle case?

Can we do better?

— Maximum delay of any one of the steps

* Clock cycle length = max(time of each step)

— In this example, the clock cycle length is 2 ns

* How long does each instruction type take now?

— Load:

— Add/r-type:
— Jump, branch:

— Store:

5 cycles * 2 ns/cycle

4 cycles * 2 ns/cycle

4 cycles * 2 ns/cycle
3 cycles * 2 ns/cycle

=10ns

=8ns

=6ns

=8ns

4/2/15

How does this help?

* Consider this program:
.data
A: .word 10,20,30,40,50,60,70,80,90
B: .word0,0,0,0,0,0,0,0,0,0
text

li $t0,10 # 1 instruction
la $t1,A # 2 instructions
loop: lw $t3,0(5t1) # executed 10 times, 10 loads total

add $t3,$t3,$t3
add $t3,5t3,$t3

sw $t3,40(5t1) # executed 10 times, 10 stores

addi $t1,$t1,4

addi $t0,$t0,-1 # 4 adds per iteration * 10 = 40 adds
bne $t0,$0,loop # executed 10 times, 10 branches

li $v0,10 # 1 instruction

syscall # 1 instruction

How does this help?

* For previous program, we have the counts:

— 45 add instructions

— 10 load instructions

— 10 store instructions

— 10 branch instructions

— Total instruction count (IC) = 75 instructions
* Suppose single cycle implementation is 10 ns cycle
* CPU time is how long program executes

* Thus, single cycle CPU time is 75 instr * 10 ns = 750ns

4/2/15

How does this help?

* CPU time for multi-cycle? l.e., how much time does it
take to execute this program on multi-cycle.
* Each instruction type takes different number cycles
* Thus, we have in this example:
CPUtime = 10loads * 5 cycles * 2 ns/cycle +
45 adds * 4 cycles * 2 ns/cycle +
10 stores * 4 cycles * 2 ns/cycle +
10 branches * 3 cycles * 2 ns/cycle
= 600 ns

Multi-cycle is FASTER than single cycle (600 ns vs. 750 ns)

How does this help?

* Consider ratio of single cycle and multi cycle CPU
times:
— 750 ns /600 ns = 1.25 times faster
—The multi-cycle is 1.25 times faster than single cycle

* Speedup = Slower CPU time / Faster CPU time

4/2/15

Consider two programs A, B

A, B executed on single and multi-cycle MIPS impl.

A: 800 adds, 200 branches
CPU time single cycle = (800+200) x 1 cycle per instruction x 10ns = 10,000ns
CPU time multicycle =800 adds x 4 cycles x 2ns +
200 branches x 3 cycles x 2 ns
=7,600ns
Speedup = 10,000 ns / 7,600 ns = 1.32x

B: 100 adds, 800 loads, 100 branches
CPU time single cycle = (100+800+100) x 1 cycle x 10ns = 10,000ns
CPU time multi cycle =100 addsx4 cyclesx2ns + 800 loadsx5 cyclesx2 ns +
100 branchesx3 cyclesx2 ns
=9,400 ns
Speedup = 10,000 ns / 9,400 ns = 1.06x

Instruction Mix

Speedups are vastly different in A,B due to the
different instructions executed

Instruction mix: The percentage of total instruction
count (IC) corresponding to each instruction type

A: 80% arithmetic (add), 20% branches
B: 10% arithmetic, 80% loads, 10% branches

4/2/15

