
1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

38

Multiplication

� More complicated than addition
• A straightforward implementation will involve addition and shifting

� A “more complex operation” implies
• More area (on silicon) and/or

• More time (more clock cycles or longer clock cycle time)

� Let’s begin from a simple, straightforward method
• For now, consider only unsigned numbers!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

39

Straightforward algorithm

01010010 (multiplicand)

01101101 (multiplier)x



2

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

40

Hardware design 1

“Straightforward but naïve design”

64-bit
shift register

64-bit
ALU

32-bit
shift register

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

41

Hardware design 2

64-bit
shift register

32-bit
ALU

32-bit
shift register

32-bit ALU instead of 64-bit ALU!



3

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

42

Hardware design 3

64-bit
shift register

32-bit
ALU

Removed a 32-bit shift register!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

43

Example

� Let’s do 0010×0110 (2×6), unsigned

Iteration Multiplicand
Implementation 3

Step Product

0 0010 initial values 0000 0110

1 0010
1: 0 -> no op 0000 0110

2: shift right 0000 0011

2 0010

1: 1 -> product = 
product + multiplicand

0010 0011

2: shift right 0001 0001

3 0010

1: 1 -> product = 
product + multiplicand

0011 0001

2: shift right 0001 1000

4 0010
1: 0 -> no op 0001 1000

2: shift right 0000 1100



4

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

44

Booth’s encoding

� Three symbols to represent a binary number: {1,0,-1}

� Examples (8-bit encoding)
• -1

11111111 (two’s complement)

0000000-1 (Booth’s encoding)

• 14
00001110 (two’s complement)

000100-10 (Booth’s encoding)

� Bit transitions in number (in two’s complement encoding) show 
how Booth’s encoding works
• 0 to 0 (from right to left): 0

• 0 to 1: -1

• 1 to 1: 0

• 1 to 0: 1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

45

Booth’s encoding

� Key point
• A “1” in the multiplier implies an addition operation

• If you have many “1”s – that means many addition operations

� Booth’s encoding is useful because it can reduce the number 
of addition operations you have to perform

� With Booth’s encoding, partial results are obtained by
• Adding multiplicand

• Adding 0

• Subtracting multiplicand



5

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

46

Booth’s algorithm in action

� Let’s do 0010×1101 (2×-3)

Iteration Multiplicand
Booth’s algorithm

Step Product

0 0010 initial values 0000 1101 0

1 0010

10 -> product = 
product – multiplicand

1110 1101 0

shift right 1111 0110 1

2 0010

01 -> product = 
product + multiplicand

0001 0110 1

shift right 0000 1011 0

3 0010

10 -> product = 
product – multiplicand

1110 1011 0

shift right 1111 0101 1

4 0010
11 -> no op 1111 0101 1

shift right 1111 1010 1


