Multiplication

= More complicated than addition
* A straightforward implementation will involve addition and shifting

= A "more complex operation” implies
¢ More area (on silicon) and/or
* More time (more clock cycles or longer clock cycle time)

= Let's begin from a simple, straightforward method
* For now, consider only unsigned numbers!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
38

Straightforward algorithm

01010010 (multiplicand)
x 01101101 (multiplier)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
39

Hardware design 1

64-bit
shift register

32-bit
shift register

Multiplier0 = 1 1. Test Multiplier0 = 0

Multiplierd

1a. Add multiplicand to product and
place the result in Product register

32bits

CS/CoE0447: Computer Organization and Assembly Language

|

' 2. Shift the Multiplicand register left 1 bit |

I

' 3. Shift the Multiplier register right 1 bit |

No: < 32 repetitions

32nd repetition?.

Yes: 32 repetitions

University of Pittsburgh

40

Hardware design 2

32-bit

S shift register

shift register

32 bits

\‘//

-

32-bit ALU instead of 64-bit ALU!

CS/CoE0447: Computer Organization and Assembly Language

Multiplier0 = 1 Multiplier0 = 0

1. Test
Multiplierd

1a. Add multiplicand to ¢
the product and place the st
Ieft half of the Product register

||

, 2. Shift the Prodt

l 3. Shift the Multiplier register right 1 bit |

1 bit |

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

University of Pittsburgh

41

Hardware design 3

64-bit

Multplicand shift register

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

Shift right

Product Write

!

, 2. Shift the Product register right 1 bit

No: < 32 repetitions

\\//

-

32nd repetition?

Yes: 32 repetitions

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Removed a 32-bit shift register!

42

Example

= Let'sdo 0010%x0110 (2x6), unsigned

Implementation 3
Iteration Multiplicand
Step Product
0 0010 initial values 0000 0110
1: 0 -> no op 0000 0110
1 0010
2: shift right 0000 0011
1: 1 -> product =
M 0010 0011
2 0010 product + multiplicand
2: shift right 0001 0001
1: 1 -> product =
g 0011 0001
3 0010 product + multiplicand
2: shift right 0001 1000
1: 0 -> no op 0001 1000
4 0010
2: shift right 0000 1100
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

43

Booth’s encoding

= Three symbols to represent a binary number: {1,0,-1}
= Examples (8-bit encoding)
o -1
= 11111111 (two's complement)
. 0000000-1 (Booth’s encoding)
< 14
- 00001110 (two's complement)
+ 000100-10 (Booth’s encoding)

= Bit transitions in number (in two’'s complement encoding) show
how Booth’s encoding works
* 0to 0 (from right to left): 0
e 0to1:-1
* 1t01:0
* 11t00:1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Booth’s encoding

= Key point
* A"1"in the multiplier implies an addition operation
* If you have many “1"s — that means many addition operations

= Booth’s encoding is useful because it can reduce the number
of addition operations you have to perform

= With Booth’s encoding, partial results are obtained by
* Adding multiplicand
* Adding 0
* Subtracting multiplicand

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
45

Booth’s algorithm

» Let'sdo 0010%x1101 (2%-3)

in action

Booth’s algorithm
Iteration Multiplicand
Step Product

0 0010 initial values 0000 1101 0
10 -> product =

1 0010 product - multiplicand 111011010
shift right 111101101
01 -> product =

2 0010 product + multiplicand 0001 0110 1
shift right 0000 1011 0
10 -> product =

3 0010 product - multiplicand 111010110
shift right 111101011
11 -> no op 111101011

4 0010
shift right 111110101

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

46

