
1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
20

Memory transfer instructions
§  How to get values to/from memory?

•  Also called memory access instructions

§  Only two types of instructions
•  Load: move data from memory to register (“load the register”)

"   e.g., lw $s5, 4($t6) # $s5 ⇐ memory[$t6 + 4]
•  Store: move data from register to memory (“save the register”)

"   e.g., sw $s7, 16($t3) # memory[$t3+16] ⇐ $s7

§  In MIPS (32-bit architecture) there are memory transfer
instructions for
•  32-bit word: “int” type in C (lw, sw)
•  16-bit half-word: “short” type in C (lh, sh; also unsigned lhu)
•  8-bit byte: “char” type in C (lb, sb; also unsigned lbu)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
21

Memory view
§  Memory is a large, single-dimension 8-bit (byte) array with an

address to each 8-bit item (“byte address”)
§  A memory address is just an index into the array

§  loads and stores give the index (address) to access

BYTE #0

BYTE #1

BYTE #2

BYTE #3

BYTE #4

BYTE #5

0

1

2

3

4

5

…

address 4 gets this byte
 $t0 = 4
 lb $t1,0($t0)
 sb $t2,0($t0)

6

7

8

BYTE #6

BYTE #7

BYTE #8

2

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
22

Memory view
§  Memory is a large, single-dimension 8-bit (byte) array with an

address to each 8-bit item (“byte address”)
§  A memory address is just an index into the array

§  loads and stores give the index (address) to access

BYTE #0

BYTE #1

BYTE #2

BYTE #3

BYTE #4

BYTE #5

0

1

2

3

4

5

…

address 4 gets this halfword
 $t0 = 4
 lh $t1,0($t0)
 sh $t2,0($t0)

6

7

8

BYTE #6

BYTE #7

BYTE #8

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
23

Memory view
§  Memory is a large, single-dimension 8-bit (byte) array with an

address to each 8-bit item (“byte address”)
§  A memory address is just an index into the array

§  loads and stores give the index (address) to access

BYTE #0

BYTE #1

BYTE #2

BYTE #3

BYTE #4

BYTE #5

0

1

2

3

4

5

…

address 4 gets this word
 $t0 = 4
 lw $t1,0($t0)
 sw $t2,0($t0)

6

7

8

BYTE #6

BYTE #7

BYTE #8

3

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
24

Effective Address calculation
§  Effective memory address specified as immediate($register)

•  Register to keep the base address
•  Immediate to determine an offset from the base address
•  Thus, address is contents of register + immediate
•  The offset can be positive or negative, 16-bit value (uses I-format)

§  Suppose base register $t0=64, then:
 lw $t0, 12($t1) address = 64 + 12 = 76

 lw $t0, -12($t1) address = 64 - 12 = 52

§  MIPS uses this simple address calculation; other architectures
such as PowerPC and x86 support different methods

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
25

Hint on addresses (la - load address)
§  Often, you need to reference a particular variable.
 .data
 var: .word 1000

§  How to reference var?

 la $t0,var
 lw $t1,0($t0)

§  la is a “pseudo-instruction”. It is turned into a sequence to
put a large address constant into $t0.
 lui $at,upperbitsofaddres
 ori $t0,$1,lowerbitsofaddress

puts the address of
variable “var” into $t0

value at the address in
$t0 is loaded ino $t1

assembler directive to
declare data (word)

4

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
26

Let’s try an in-class exercise together!

§  Create a word (integer) variable “myVar”
§  Give the variable the value 20
§  Print the value to the console (Run I/O window)
§  Terminate the program
§  Extension: Add 10 to the value, store it to myVar, print it

§  To do this, we’ll need to use:
•  Data segment declaration with a word variable type
•  Instruction segment declaration
•  Load word instruction
•  Syscall instruction
•  Assorted la and li instructions

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
27

Let’s try an in-class example together

§  Consider the C program and rewrite as MIPS

 void fun(void) {
 int a=10,b=20,c=30;
 a=a+10;
 b=0;
 c=a+b;
 }

5

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
28

Machine code example

swap:
 sll $t0, $a1, 2
 add $t1, $a0, $t0
 lw $t3, 0($t1)
 lw $t4, 4($t1)
 sw $t4, 0($t1)
 sw $t3, 4($t1)
 jr $ra

void swap(int v[], int k)
{

 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;

}

Let’s try it in MARS!!!! (mips4.asm)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
29

Memory organization
§  32-bit byte address

•  232 bytes with byte addresses from 0 to 232 –
1

•  230 words with byte addresses 0, 4, 8, …, 232
– 4

§  Words are aligned
•  2 least significant bits (LSBs) of an address

are 0s
§  Half words are aligned

•  LSB of an address is 0

§  Addressing within a word
•  Which byte appears first and which byte the

last?
•  Big-endian vs. little-endian

"   “Little end (LSB) comes first (at low address)”
"   “Big end (MSB) comes first (at low address)”

WORD

WORD

WORD

WORD

WORD

WORD

0

4

8

12

16

20

…

0 1 2 3

0 1 2 3

0

0

Little

Big

Low address High address

Let’s try it in MARS!!!! (mips5.asm)

6

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
30

More on alignment
§  A misaligned access

•  Assume $t0=0, then lw $s4, 3($t0)
§  How do we define a word at address?

•  Data in byte 0, 1, 2, 3
"   If you meant this, use the address 0, not 3

•  Data in byte 3, 4, 5, 6
"   If you meant this, it is indeed misaligned!
"   Certain hardware implementation may support this; usually not
"   If you still want to obtain a word starting from the address 3 – get a byte from

address 3, a word from address 4 and manipulate the two data to get what
you want

§  Alignment issue does not exist for byte access

…

0 1 2 3

11 10 9 8

0

4 7 6 5 4

8

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
31

Shift instructions

§  Bits change their positions inside a word
§  <op> <rtarget> <rsource> <shift_amount>
§  Examples

•  sll $s3, $s4, 4 # $s3 ⇐ $s4 << 4
•  srl $s6, $s5, 6 # $s6 ⇐ $s5 >> 6

§  Shift amount can be in a register (“shamt” is not used)
§  Shirt right arithmetic (sra) keeps the sign of a number

•  sra $s7, $s5, 4

Name Fields Comments

R-format op
NOT

USED
rt rd shamt funct shamt is “shift amount”

Let’s try it in MARS!!!! (mips6.asm)

