
1

CS/COE0447: Computer Organization
and Assembly Language

Chapter 2

modified by Bruce Childers
original slides by Sangyeun Cho

Dept. of Computer Science
University of Pittsburgh

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
2

Five classic components

I am like a control
tower

I am like a pack of
file folders

I am like a conveyor
belt + service stations

I exchange information
with outside world

2

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
3

MIPS operations and operands
§  Operation specifies what function to perform by the instruction
§  Operand specifies what quantity to use with the instruction

§  MIPS operations
•  Arithmetic (integer/floating-point)
•  Logical (AND, OR, etc)
•  Shift (moves bits around)
•  Compare (equality test)
•  Load/store (get/put stuff in memory)
•  Branch/jump (make decisions)
•  System control and coprocessor

§  MIPS operands
•  Registers (one of 32 general-purpose regs)
•  Fixed registers (e.g., HI/LO)
•  Memory location (place in memory)
•  Immediate value (constant)

addi $t0,$t1,10

operation: addition

destination operand

source operands

$t0 = $t1 + 10

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
4

MIPS arithmetic
§  <op> <rtarget>, <rsource1>, <rsource2>

§  All arithmetic instructions have 3 operands
•  Operand order in notation is fixed; target (destination) first
•  Two source registers and one target (destination) register
•  Operands are either 2 registers or 1 register + 1 immediate (constant)
•  Destination is always a register

§  Examples
•  add $s1, $s2, $s3 # $s1 ⇐ $s2 + $s3
•  sub $s4, $s5, $s6 # $s4 ⇐ $s5 – $s6

3

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
5

MIPS registers
r0
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10
r11
r12
r13
r14
r15

r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31

$zero
$at
$v0
$v1
$a0
$a1
$a2
$a3
$t0
$t1
$t2
$t3
$t4
$t5
$t6
$t7

HI
LO

PC

$s1
$s2
$s3
$s4
$s5
$s6
$s7
$t8
$t9
$k0
$k1
$gp
$sp
$fp
$ra

$s0

General-Purpose Registers
Just a table, or array, of temporary locations

referred to by a number (register number)

Special-Purpose Registers

32 bits 32 bits 32 bits

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
6

General-purpose registers (GPRs)
§  The name GPR implies that all these registers can be used

as operands in instructions
§  Still, conventions and limitations exist to keep GPRs from

being used arbitrarily (from the PRM)
•  $0, termed $zero, always has a value of “0”
•  $31, termed $ra (return address), is reserved for storing the return

address for subroutine call/return
•  Register usage and related software conventions are typically

summarized in “application binary interface” (ABI) – important when
writing system software such as an assembler or a compiler

§  32 GPRs in MIPS
•  Are they sufficient?

4

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
7

Special-purpose registers
§  HI/LO registers used to store result from multiplication
§  PC register (program counter)

•  Always keeps the pointer to the current program execution point;
instruction fetching occurs at the address in PC

•  Not directly visible and manipulated by programmers in MIPS

§  Other instruction set architectures
•  May not have HI/LO; use GPRs to store the result of multiplication
•  May allow storing to PC to make a jump

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
8

Instruction encoding
§  Instructions are encoded in binary numbers

•  Assembler translates assembly programs into binary numbers
•  Machine (processor) decodes binary numbers to figure out what the

original instruction is
•  MIPS has a fixed, 32-bit instruction encoding

§  Encoding should be done in a way that decoding is easy
§  MIPS instruction formats

•  R-format: arithmetic instructions
•  I-format: data transfer/arithmetic/branch instructions
•  J-format: jump instruction format (changes program counter)
•  (FI-/FR-format: floating-point instruction format)

5

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
9

MIPS instruction formats
Name Fields Comments

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R-format
op

(opcode) rs rt rd shamt funct Arithmetic/logic instruction format

I-format
op

(opcode) rs rt Immediate/address Data transfer, branch, imm. format

J-format
op

(opcode) target address Jump instruction format

bit 31 bit 0

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
10

Instruction encoding example
add $t0,$t1,$t8

operation is “addition”
opcode = 000000 (6 bits)
funct = 100000 (6 bits)

$t0 is register 8
rd = 01000 (5 bits)

$t1 is register 9
rs = 01001 (5 bits)

$t8 is register 24
rt = 11000 (5 bits)

00000001001110000100000000100000

Op Rs Rt Rd Shamt Funct
Resulting encoded instruction:

shamt is unused
shamt = 00000 (5 bits)

6

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
11

Dealing with immediate

§  Many operations involve small “immediate” value
•  a = a + 1
•  b = b – 4
•  c = d & 0xff

§  Example instructions
•  addi $s3, $s2, 1 # $s3 ⇐ $s2 + 1
•  addi $s4, $s1, -4 # $s4 ⇐ $s1 + (-4)
•  andi $s5, $s0, 0xff # $s5 ⇐ $s0 & 0x000000ff

§  Immediate is pos/neg up to 15 bits (15 bit value with 1 bit “sign”)
§  li $reg,immediate # $s3 ⇐ 0xFDECBA98 (up to 32 bits)

Name Fields Comments

I-format op rs rt 16-bit immediate Transfer, branch, immediate format

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
12

Interacting with the OS
§  We need the OS’s help!!!

•  How to print a number? (output)
•  How to read a number? (input)
•  How to terminate (halt) a program?
•  How to open, close, read, write a file?
•  These are operating system “services”

§  Special instruction: syscall
•  A “software interrupt” to invoke OS for an action (to do a service)
•  Need to indicate the service to perform (e.g., print vs. terminate)
•  May also need to pass an argument value (e.g., number to print)

7

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
13

A few useful syscalls
§  syscall takes a service ID (number) sent to OS in $v0

 <load arguments>
 <set service id in $v0>
 syscall

§  Print integer
•  $v0=1, $a0=integer to print

§  Read integer
•  $v0=5, after syscall, $v0 holds the integer read from keyboard

§  Print string
•  $v0=4, $a0=memory address of string to print (null terminated)

§  Exit (halt)
•  $v0=10, no argument

§  See MARS docs for more!!! Also, attend recitation.

Example: Print 100d
 li $a0,100 # value to print
 li $v0,10 # print int service
 syscall # call OS

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
14

Example: First Asm. Program!

Program should do the following:

①  Ask user for a number, X
②  Add 100 to X
③  Print the result (X+100)
④  Exit

What do we need?
 syscall to input, output number, exit program
 add instruction for X + 100
 load immediate

8

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
15

Example: First Asm. Program!

!li !$v0,5! ! !# read integer, X!
!syscall ! ! !# returns X in $v0!
!addi !$a0,$v0,100 !# $a0 = $v0 + 100!
!li !$v0,1! ! !# print integer in $a0!
!syscall ! ! !# invoke OS!
!li !$v0,10 ! !# exit program!
!syscall!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
16

Example: Second Asm. Program!

§  Let’s clean this up a bit.
•  We should prompt the user to ask for a number.
•  We should print a prompt with the output.

§  We need to use strings in the assembly program.
•  The strings are data!
•  Specify string name, string type, and string value

§  Data is specified in special part of program: “data section”
§  Data has general format:

name: !.type ! !data-values!
 allowed types are: asciiz, word, byte, etc.

9

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
17

!.data!
msg1: !.asciiz ! !“Enter a value:\n“ !!
msg2: !.asciiz ! !“Sum of value and 100:\n”!

!.text!
!li !$v0,4 ! !# prompt user (print string)!
!la !$a0,msg1 !# indicate the message!
!syscall!
!li !$v0,5 ! !# read integer, X!
!syscall ! ! !!
!addi !$s0,$v0,100 !# $s0 = X + 100!
!li !$v0,4 ! !# output message!
!la !$a0,msg2 !# indicate the message!
!syscall!
!li !$v0,1 ! !# print integer!
!move !$a0,$s0 !# value to print!
!syscall ! ! !!
!li !$v0,10! !# exit program!
!syscall!

DATA

CODE

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
21

Logic instructions

§  Bit-wise logic operations
§  <op> <rtarget>, <rsource1>, <rsource2>
§  Examples

•  and $s3, $s2, $s1 # $s3 ⇐ $s2 & $s1
•  or $t3, $t2, $t1 # $t3 ⇐ $t2 | $t1
•  nor $s3, $t2, $s1 # $s3 ⇐ ~($t2 | $s1)

note: nor $s3,$t2,$0 is $s3 ⇐ !($t2) (not of $t2)
•  xor $s3, $s2, $s1 # $s3 ⇐ $s2 ^ $s1

note: xor produces 1 iff one of the operands is 1

Name Fields Comments

R-format op rs rt rd shamt funct Logic instruction format

10

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
22

Logic Instructions with Immediates

§  Logic instructions have I-format (small immediate) versions
•  andi $s0,$s1,0xff00
•  ori $s0,$s1,0x0ff0
•  xori $s0,$s1,0xf00f
•  nori $s0,$s1,0xffff

§  Upper bits (bits 31..16) are set to 0s by instruction
•  E.g., 0xff00 is really 0x0000ff00
•  This operation is known as “zero extension”

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
23

Handling long immediate number
§  li allows loading large immediates (> 16 bits)

•  Pseudo-operation: Assembler “converts” to actual machine instructions

§  Consider: li $s3,0xAA55CC33

§  Converted to two instructions:
•  lui $s3, 1010 1010 0101 0101b

§  Then we fill the low-order 16 bits
•  ori $s3, $s3, 1100 1100 0011 0011b

1010101001010101 0000000000000000

1010101001010101 1100110000110011 $s3

$s3

11

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
24

Shift instructions

§  Bits change their positions inside a word
§  <op> <rtarget> <rsource> <shift_amount>
§  Examples

•  sll $s3, $s4, 4 # $s3 ⇐ $s4 << 4
•  srl $s6, $s5, 6 # $s6 ⇐ $s5 >> 6

§  Shift amount can be in a register (“shamt” is not used)
§  Shirt right arithmetic (sra) keeps the sign of a number

•  sra $s7, $s5, 4

Name Fields Comments

R-format op
NOT

USED
rt rd shamt funct shamt is “shift amount”

Let’s try it in MARS!!!! (mips6.asm)

