CS/COE0447: Computer Organization
and Assembly Language

Chapter 2

modified by Bruce Childers
original slides by Sangyeun Cho

Dept. of Computer Science
University of Pittsburgh

Five classic components

. I am like a pack of
I am like a control file folders

tower

| exchange information
with outside world

I am like a conveyor
belt + service stations

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

2

1)

MIPS operations and operands

= Operation specifies what function to perform by the instruction
= Operand specifies what quantity to use with the instruction

. MIPS operations / operation: addition

Arithmetic (integer/floating-point)
» Logical (AND, OR, etc)

+ Shift (moves bits around) .
« Compare (equality test) addi $t0’$t1 ’1 0
+ Load/store (get/put stuff in memory) \

« Branch/jump (make decisions)
« System control and coprocessor
= MIPS operands

+ Registers (one of 32 general-purpose regs) T
+ Fixed registers (e.g., HI/LO) destination operand

+ Memory location (place in memory)

+ Immediate value (constant) $t0 = $t1 + 10

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

MIPS arithmetic

" <°p> <rtarget>! <I”source1>! <I”source2>

= All arithmetic instructions have 3 operands
- Operand order in notation is fixed; target (destination) first
» Two source registers and one target (destination) register
« Operands are either 2 registers or 1 register + 1 immediate (constant)
- Destination is always a register

= Examples
+ add $s1, $s2, $s3 # $s1 <= $s2 + $s3
+ sub $s4, $s5, $s6 # $s4 < $s5 — $s6
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

2)

MIPS registers

$zero
$at
$v0
$v1
$a0
$a1
$a2
$a3
$t0
$t1
$t2
$t3
$t4
$t5
$t6
$t7

Just a table, or array, of temporary locations
referred to by a number (register number)

32 bits 32 bits
r0 r16
* *
* *
* ?
* *
* T
* T
* *
S I oo

General-Purpose Registers

CS/CoE0447: Computer Organization and Assembly Language

$s0
$s1
$s2
$s3
$s4
$s5
$s6
$s7
$t8
$t9
$k0
$k1
$gp
$sp
$fp
$ra

32 bits

HI
LO

Special-Purpose Registers

University of Pittsburgh

General-purpose registers (GPRs)

= The name GPR implies that all these registers can be used
as operands in instructions

= Still, conventions and limitations exist to keep GPRs from
being used arbitrarily (from the PRM)
- $0, termed $zero, always has a value of “0”

- $31, termed $ra (return address), is reserved for storing the return
address for subroutine call/return

» Register usage and related software conventions are typically

summarized in “application binary interface” (ABI) — important when
writing system software such as an assembler or a compiler

= 32 GPRs in MIPS

» Are they sufficient?

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

3)

Special-purpose registers
= HI/LO registers used to store result from multiplication

= PC register (program counter)

« Always keeps the pointer to the current program execution point;
instruction fetching occurs at the address in PC

» Not directly visible and manipulated by programmers in MIPS

= Other instruction set architectures
» May not have HI/LO; use GPRs to store the result of multiplication
« May allow storing to PC to make a jump

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Instruction encoding

= Instructions are encoded in binary numbers
« Assembler translates assembly programs into binary numbers

« Machine (processor) decodes binary numbers to figure out what the
original instruction is
« MIPS has a fixed, 32-bit instruction encoding
= Encoding should be done in a way that decoding is easy
= MIPS instruction formats
- R-format: arithmetic instructions
- |-format: data transfer/arithmetic/branch instructions

- J-format: jump instruction format (changes program counter)
+ (FI-/FR-format: floating-point instruction format)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

4)»

MIPS instruction formats

Nam . Fiel . mmen
ame .24 elds bit 0 Comments
Field Size 6 bits 5 bits | 5bits | 5bits | 5 bits 6 bits All MIPS instructions 32 bits
R-format opP rs rt rd shamt funct Arithmetic/logic instruction format
(opcode)
I-format op rs rt Immediate/address Data transfer, branch, imm. format
(opcode)
op . n
J-format target address Jump instruction format
(opcode)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Instruction encoding example
add $t0,$t1,5t8

\ N
\\ $t1 is register 9

$t8 is register 24
rt = 11000 (5 bits)

rs = 01001 (5 bits)

$t0 is register 8
rd = 01000 (5 bits)

operation is “addition”
opcode = 000000 (6 bits)
funct = 100000 (6 bits)

Resulting encoded instruction:

shamt is unused
shamt = 00000 (5 bits)

Op

Rs

Rt

Rd

Shamt| Funct

00000001001110000100000000100000

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

50

Dealing with immediate

Comments

|-format op rs rt 16-bit immediate Transfer, branch, immediate format

= Many operations involve small “immediate” value

c a=a+1
- b=b-4
+ c=d & Oxff
= Example instructions
+ addi $s3, $s2, 1 # $s3 <= $s2 + 1
- addi $s4, $s1, -4 # $s4 <= $s1 + (-4)
+ andi $s5, $s0, Oxff # $s5 < $s0 & 0x000000ff
= Immediate is pos/neg up to 15 bits (15 bit value with 1 bit “sign”)
= li $reg,immediate # $s3 < OxFDECBA98 (up to 32 bits)
CS/COE0447: Computer Organization and Assembly Language University of Pittsburgh

Interacting with the OS

= We need the OS’s help!!!
» How to print a number? (output)
» How to read a number? (input)
» How to terminate (halt) a program?
* How to open, close, read, write a file?
» These are operating system “services”

= Special instruction: syscall
- A “software interrupt” to invoke OS for an action (to do a service)
» Need to indicate the service to perform (e.g., print vs. terminate)
» May also need to pass an argument value (e.g., number to print)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

6>

A few useful syscalls

= syscall takes a service ID (number) sent to OS in $v0
<load arguments>

<set ice id in $v0> Example: Print 100d
s;sec;:amce’ 8 li $a0,100 # value to print

. L7 li $v0,10 # print int service
Print integer syscall # call OS

$v0=1, $al=integer to print
= Read integer

$v0=5, after syscall, $v0 holds the integer read from keyboard
= Print string

$v0=4, $a0=memory address of string to print (null terminated)
= Exit (halt)

$v0=10, no argument

= See MARS docs for more!!l Also, attend recitation.

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Example: First Asm. Program!

Program should do the following:

(1) Ask user for a number, X
(2 Add 100 to X

@ Print the result (X+100)
@ Exit

What do we need?

syscall to input, output number, exit program
add instruction for X + 100
load immediate

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

7»

Example: First Asm. Program!

1li $v0,5 # read integer, X
syscall # returns X in $vO
addi $a0,$v0,100 # $a0 = $v0 + 100

1i $vo,1 # print integer in $a0
syscall # invoke 0S

1i $v0,10 # exit program
syscall

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Example: Second Asm. Program!

Let’s clean this up a bit.
» We should prompt the user to ask for a number.
+ We should print a prompt with the output.

= We need to use strings in the assembly program.
« The strings are data!
« Specify string name, string type, and string value

= Data is specified in special part of program: “data section”

= Data has general format:
name: . type data-values
allowed types are: asciiz, word, byte, etc.

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

8)

.data
msgl: .asciiz “Enter a value:\n” DATA
msg2: .asciiz “Sum of value and 100:\n”
.text
1i $vo0,4 # prompt user (print string)
la $a0,msgl # indicate the message
syscall
1i $v0,5 # read integer, X CODE
syscall
addi $s0,$v0,100 # $sO0 = X + 100
1i $vo0,4 # output message
la $a0,msg2 # indicate the message
syscall
1i $vo,1 # print integer
move $a0,S$s0 # value to print
syscall
1i $vo0,10 # exit program
syscall
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Logic instructions

Fields Comments

R-format op rs rt rd shamt funct Logic instruction format

= Bit-wise logic operations
= <op> <rtarget>, <r > <r

source1” »
= Examples
- and $s3, $s2, $s1 # $s3 = $s2 & $s1
- or $t3, $t2, $t1 # $t3 < $t2 | $t1
< nor $s3, $t2, $s1 # $s3 = ~($t2 | $s1)
note: nor $s3,$t2,$0 is $s3 <= !($t2) (not of $t2)
« xor $s3, $s2, $s1 # $s3 <= $s2 * $s1
note: xor produces 1 iff one of the operands is 1

sourceZ>

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
21

9b

Logic Instructions with Immediates

= Logic instructions have I-format (small immediate) versions

- andi $s0,$s1,0xff00
e ori $s0,$s1,0x0ff0
« xori $s0,$s1,0xfO0f
« nori $s0,$s1,0xffff

= Upper bits (bits 31..16) are set to Os by instruction
- E.g., Oxff0O is really 0x0000ff00
« This operation is known as “zero extension”

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
22

Handling long immediate number

= li allows loading large immediates (> 16 bits)
« Pseudo-operation: Assembler “converts” to actual machine instructions

= Consider: li $s3,0xAA55CC33

= Converted to two instructions:
« lui $s3, 1010 1010 0101 0101b

$s3 |101 0101001010101 |0000000000000000

= Then we fill the low-order 16 bits
 ori $s3, $s3, 1100 1100 0011 0011b

$s3 [1010101001010101 _[1100110000110011

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
23

10

Shift instructions

Fields Comments

R-format op rt rd shamt funct shamt is “shift amount”

= Bits change their positions inside a word
* <OP> <ligrger™ <lsource™ <Shift_amount>

= Examples
+ sl $s3, $s4, 4 # $s3 <= $s4 << 4
« srl $s6, $s5, 6 # $s6 < $s5>>6

= Shift amount can be in a register (“shamt” is not used)
= Shirt right arithmetic (sra) keeps the sign of a number

* sra$s7, $s5, 4 Let’s try it in MARS!!!! (mips6.asm)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

24

