Memory

CS 447, Spring 2016

Processor (CPU)

32 registers
numbered 0..31

small number of registers
instructions operate on operands in registers
need memory space to hold data and text

Memory

1/25/16

Fetch, Execute
fetch transfers
(reads) instruction
from memory to CPU

Processor (CPU)

32 registers
numbered 0..31

Where is next
instruction?

Memory

Text (Instructions)

Fetch, Execute
fetch transfers
(reads) instruction
from memory to CPU

Processor (CPU)

32 registers
numbered 0..31

PC: 00400000

Where is next
instruction?

Memory

Address
A location to refer to some “location”
in the memory

0000000c

34240000

3c011001

24020004

0040000c
00400008
00400004
00400000

1/25/16

Memory
Fetch, Execute
fetch transfers
(reads) instruction
from memory to CPU
Processor (CPU)
32 registers
numbered 0..31
PC: 00400000
0000000c 0040000c
34240000 00400008
Where is next 3c011001 00400004
instruction? 24020004 00400000
Memory
Fetch, Execute
fetch transfers
(reads) instruction
from memory to CPU
Processor (CPU)
32 registers
numbered 0..31
PC: 00400004
0000000c 0040000c
34240000 00400008
Where is next 3c011001 00400004
instruction? 24020004 00400000

1/25/16

Processor (CPU)

32 registers
numbered 0..31

Memory

Text (Instructions)

Processor (CPU)

32 registers
numbered 0..31

Memory

Text (Instructions)

Reserved

1001000c
10010008
10010004
10010000

0040000c
00400008
00400004
00400000

1/25/16

Processor (CPU)

Memory

32 registers 1001000c
numbered 0..31 10010008
10010004
10010000
Load, Store instructions 0040000c
Load: Read data from the memory Text (Instructions) 00400008
Store: Write data to the memory 00400004
00400000

Memory

Processor (CPU)

32 registers 1001000c
numbered 0..31 10010008
10010004
10010000
Load, Store instructions 0040000c
Load: Read data from the memory Text (Instructions) 00400008
Store: Write data to the memory 00400004
Specifiy register and address 00400000

Load: Destination reg € MEM[address]
Store: MEM[address] € Source reg

Reserved

1/25/16

Processor (CPU)

Memory

1001000c

32 registers
numbered 0..31 10010008
10010004
10010000
Load, Store instructions 0040000c
Load: Read data from the memory Text (Instructions) 00400008
Store: Write data to the memory 00400004
Specifiy register and address 00400000
Load: Destination reg € MEM[address]
Store: MEM[address] € Source reg
Specify type (byte, halfword, word)
Memory
Processor (CPU)
32 registers 1001000c
numbered 0..31 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 Text (Instructions) 00400008
lw $t0,0(5t1) 00400004
00400000

Reserved

1/25/16

Processor (CPU)

Memory

32 registers 1001000¢
numbered 0..31 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
lw $t0,0(5t1) 34290000 00400004
3c011001 00400000

Memory

Processor (CPU)

32 registers 1001000¢
numbered 0..31 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
34290000 00400004
3c011001 00400000

lw $t0,0(St1)
]

type (w)

Reserved

1/25/16

Processor (CPU)

Memory

1001000c
10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
lw $t0,0(5t1) 34290000 00400004
3c011001 00400000

Memory

Processor (CPU)

$t0:0 1001000c
$t1:10010000 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
Iw $t0,0(St1) 34290000 00400004
3c011001 00400000

Reserved

1/25/16

Processor (CPU)

Memory

1001000c

$t0:0

$t1:10010000 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
lw $t0,0(5t1) 34290000 00400004
3c011001 00400000

Memory

Processor (CPU)

$t0:ABCD1234 1001000c
$t1:10010000 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
Iw $t0,0(St1) 34290000 00400004
3c011001 00400000

Reserved

1/25/16

Processor (CPU)

$t0:ABCD1234

Memory

1001000c

$t1:10010000
$t2:FFFFFFFF 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
lw $t0,0(St1) 34290000 00400004
Store $t2 to 100100000 3c011001 00400000

Suppose $t2=FFFFFFF
Memory
Processor (CPU)

$t0:ABCD1234 '1.;)01000c

$t1:10010000
$t2:FFFFFFFF 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
lw $t0,0(St1) 34290000 00400004
Store St2 to 100100000 3c011001 00400000

Suppose $t2=FFFFFFFF
sw S$t2,0(St1)

Reserved

1/25/16

10

Processor (CPU)

Memory

1001000c

$t0:ABCD1234
$t1:10010000 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
lw $t0,0(St1) 34290000 00400004
Store $t2 to 100100000 3c011001 00400000

Suppose $t2=FFFFFFFF
Memory
Processor (CPU)

$t0:ABCD1234 1001000c
$t1:10010000 IR 10010008
10010004
10010000
Example: Load Word at 10010000 into $t0 0040000c
la $t1,0x10010000 8d280000 00400008
Iw $t0,0(St1) 34290000 00400004
Store $t2 to 100100000 3c011001 00400000

Suppose $t2=FFFFFFFF
sw S$t2,0(St1)

Reserved

1/25/16

11

Processor (CPU)

$t0:ABCD1234
$t1:10010000

PC:XXXXXXXXX

transfer

Example: Load Word at 10010000 into $t0

Memory

1001000c
10010008

0040000c

04

la $t1,0x10010000 8d280000 00400008
lw $t0,0(St1) 34290000 00400004
Store $t2 to 100100000 3¢011001 00400000
Suppose $t2=FFFFFFFF
Memory
Processor (CPU)
$t0:ABCD1234 1001000c
$t1:10010000 10010008
04
-
Example: Load Word at foo into $t0 0040000c
la Sti,foo 8d280000 00400008
Iw $t0,0(St1) 34290000 00400004
Store S$t2 to foo 3¢011001 00400000

Suppose $t2=FFFFFFFF
sw S$t2,0(St1)

Reserved

1/25/16

12

This is a word:
4 bytes
OxAB,0xCD,0x12,0x34

Processor (CPU)

Memory

1001000c

10010008
10010004
10010000
0040000c
8d280000 00400008
34290000 00400004
3c011001 00400000
IIIIIIII%H!%EIIH%H!IIIIIII
Memory
This is a word:
4 bytes
OxAB,0xCD,0x12,0x34
Processor (CPU)

1001000c
10010008
10010004
10010000
0040000c
8d280000 00400008
34290000 00400004
3c011001 00400000

Reserved

1/25/16

13

Memory transfer instructions

= How to get values to/from memory?
» Also called memory access instructions

= Only two types of instructions
« Load: move data from memory to register (“load the register”)

. e.g., lw $s5, 4($t6) # $s5 < memory[$t6 + 4]
- Store: move data from register to memory (“save the register”)
. e.g., sw $s7, 16($t3) # memory[$t3+16] < $s7

= In MIPS (32-bit architecture) there are memory transfer
instructions for
+ 32-bit word: “int” type in C (Iw, sw)
+ 16-bit half-word: “short” type in C (Ih, sh; also unsigned lhu)
- 8-bit byte: “char” type in C (Ib, sb; also unsigned Ibu)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
27

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

0 BYTE #0

1 BYTE #1

2 BYTE #2

3 BYTE #3

4 BYTE #4 address 4 gets this byte

$t0=4

5 BYTE #5 Ib $t1,0($t0)
6 S sb $t2,0($t0)
7 BYTE #7

8 BYTE #8

= loads and stores give the index (address) to access
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
28

1/25/16

14

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

Ib $t1, 0($t0) 0 BYTE #0

'_ 1 BYTE #1

operation: Load from memory

type: Byte
4 BYTE #4 address 4 gets this byte
$t0=4
5 BYTE #5 Ib $t1,0($t0)
6 EVIE % sb $t2,0($t0)
BYTE #7
8 BYTE #8

= loads and stores give the index (address) to access

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
29

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

Ib $t1, 0($tk0) 0 BYTE #0
1 BYTE #1

determines address
address=0+$t0=0+4 [

DT T 7O

4 BYTE #4 address 4 gets this byte
$t0=4
5 BYTE #5 Ib $t1,0($t0)
6 B sb $t2,0($t0)
BYTE #7
8 BYTE #8

= loads and stores give the index (address) to access

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
30

1/25/16

15

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

Ib $t1, 0($t0) 0 BYTE #0
&

load has destination register
$t1 will have contents at address 4
$t1 will be 0xAB

4 BYTE #4 VAL=AB| address 4 gets this byte

5 BYTE #5 ﬁ:ost_1 ?0($t0)

6 g sb $t2,0($t0)
BYTE #7

8 BYTE #8

= loads and stores give the index (address) to access

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

31

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

sb $t2, 0($t0) 0 BYTE #0
=

store byte
register $t2 is source register
suppose $t2=0xFE

4 BYTE #4 VAL=AB| address 4 gets this byte

5 BYTE #5 ﬁ:ost_1 ?0($t0)

6 g sb $t2,0($t0)
BYTE #7

8 BYTE #8

= loads and stores give the index (address) to access

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

32

1/25/16

16

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

sb $t2, 0($t0) 0 BYTE #0
=

store byte
register $t2 is source register
suppose $t2=0xFE

4 BYTE #4 VAL=FE | address 4 gets this byte

5 BYTE #5 ﬁ:ost_1 ?0($t0)

6 B sb $t2,0($t0)
BYTE #7

8 BYTE #8

= loads and stores give the index (address) to access
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
33

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

0 BYTE #0

1 BYTE #1

2 BYTE #2

3 BYTE #3

4 BYTE #4 address 4 gets this halfword
5 BYTE #5 Iﬁtgt;,g(stO)

6 g sh $t2,0($t0)

7 BYTE #7

8 BYTE #8

= loads and stores give the index (address) to access
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
34

1/25/16

17

Memory view

= Memory is a large, single-dimension 8-bit (byte) array with an
address to each 8-bit item (“byte address”)

= A memory address is just an index into the array

0 BYTE #0

1 BYTE #1

2 BYTE #2

3 BYTE #3

4 BYTE #4 address 4 gets this word

$t0=4

5 BYTE #5 Iw $t1,0($t0)
6 BYTE #6 sw $t2,0($t0)
7 BYTE #7

8 BYTE #8

= loads and stores give the index (address) to access

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

35

Effective Address calculation

= Effective memory address specified as immediate($register)
+ Register to keep the base address
+ Immediate to determine an offset from the base address
» Thus, address is contents of register + immediate
- The offset can be positive or negative, 16-bit value (uses I-format)
= Suppose base register $t1=64, then:

1w $t0, 12($tl) address
1w $t0, -12($t1) address

64 + 12 76
64 - 12 = 52

= MIPS uses this simple address calculation; other architectures
such as PowerPC and x86 support different methods

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

36

1/25/16

18

Hint on addresses (1a - load address)

= Often, you need to reference a particular variable.
.data ///w assembler directive to
var: .word 0x1000, 0x2000 | | declare data (word)
« How to referencey‘ puts the address of
variable “var” into $t0
la $t0,var

1w $t1,0($t0)
1w $t2,4($t0)

value at the address in
$t0 is loaded ino $t1

= la is a “pseudo-instruction”. It is turned into a sequence to
put a large address constant into $t0.
lui $at,upperbitsofaddres
ori $t0,$1,lowerbitsofaddress

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
37

Let’s try an in-class exercise together!

= Create a word (integer) variable “myVar”

= Give the variable the value 20

= Print the value to the console (Run I/O window)

= Terminate the program

= Extension: Add 10 to the value, store it to myVar, print it

= To do this, we’'ll need to use:
- Data segment declaration with a word variable type
+ Instruction segment declaration
» Load word instruction
+ Syscall instruction
+ Assorted la and li instructions

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
38

1/25/16

19

In-class Example

= set myVar=20, print myVar, terminate

.data
myVar: .word 20
text
la $t0,myVar # address of “myVar”
Iw $a0,0($t0) # load value into $a0

li $v0,1 # print integer service
syscall # call operating system
li $v0,10 # terminate service
syscall # call operating system
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

39

Another example

= What about an array?
- A sequence of data elements
- Each element can be accessed (“references”) by an index
+ 10 elements: Index 0, 1,2, 3,4,5,6,7,8,9

= E.g., declare a C array of integers with 5 numbers
« int A[5];
- belements: A[0], A[1], A[2], A[3], A[4]

= This is data. How is it represented?
« 5integers in memory; an integer is a word in MIPS (4 bytes)
+ Element 0: at lowest address
- Element 4: at highest address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
40

1/25/16

20

10010018
Processor (CPU) 10010014
10010010
1001000c
10010008
10010004
10010000

0040000c
Text (Instructions) 00400008
00400004
00400000

Reserved

CS/CoE0447: Computer Organization and Assembly Language

sity of Pittsburgh

10010018
Processor (CPU) 10010014
10010010
1001000c
10010008
10010004
10010000

0040000c
Text (Instructions) 00400008
00400004
00400000

Reserved
CS/CoE0447: Computer Organization and Assembly Language sity of Pittsburgh

Al4]
Al3]
Al2]
Al1]
Al0]

1/25/16

21

10010018
Processor (CPU) 10010014
10010010
1001000c
10010008
10010004
10010000

Example: 0040000c

Write a program to Add 10 to A[O] Text (Instructions) 00400008
00400004
00400000

Reserved
CS/CoE0447: Computer Organization and Assembly Language

Al4]
Al3]
Al2]
Al1]
Al0]

sity of Pittsburgh

Example: add 10 to A[O]
.data
array_A: .word 10,20,30,40,50
text

la $t0,aray A—n—w

Iw $t1,0($t0) Use label to reference array
add $t1,5t1,10 \

load A[0]’s value into register

sw $t1,0($t0) \

store new A[0]’s value
in memory

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

1/25/16

22

10010018 A[4]
Processor (CPU) 10010014 A[3]
10010010 A[2]
1001000c A[1]
10010008 A[0]

10010004

10010000

Example: 0040000c
Write a program to add A[0] and A[1] Text (Instructions) 00400008
putting the result in A[3] 00400004
00400000

Reserved

CS/CoE0447: Computer Organization and Assembly Language sity of Pittsburgh

Example: Write a program to add A[0] and A[1]
putting the result in A[3]

.data
array_A: .word 10,20,30,40,50
text

la $t0aray A—m« —
Iw $t1,0($t0) Use label to reference array

Iw $t2,4($t0)

add $t1,$t1,5t2 \ load A[0]’s value into register
sw $t1,12($t0)

load A[1]’s value into register
StO+4 is next array element

Why $t0+1277??

A[3] is 12 bytes from A[0]
3 integers * 4 bytes each = 12

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

1/25/16

23

Memory Organization

32-bit byte address: 0 WORD #0

. 32 i 2.
232 bytes with byte addresses from 0 to 232-1 4 WORD #1

- 230 words with byte addresses 0, 4, 8, ..., 2324
8 WORD #2

Words are aligned 12 WORD #3

+ 2 least significant bits (LSBs) of an address are 0s 16 WORD #4
Half words are aligned 20 WORD #5
* LSB of an address is 0
. . Low High
Addressing within a word: Address Address
+ Which byte appears first and which byte last? 0 n
+ Big-endian vs. little-endian Little Endian

+ Little end (LSB) comes first (at low address)

+ Big end (MSB) comes first (at low address) 0 n

Big Endian

Alignment

A misaligned access
* Assume $t0=0, then 1w $s4, 3($t0)
How do we define a word at an address? olol1712
« Datainbyte0,1,2,3
* If you meant this, use the address 0, not 3.
« Datainbyte 3,4, 5,6
« If you meant this, it is indeed misaligned!
» Certain hardware implementation may support this; usually not.

« If you still want to obtain a word starting from the address 3 — get a
byte from address 3, a word from address 4 and manipulate the two
data to get what you want

Alignment issue does not exist for byte access.

414]15]6
818|9]10]|11

Easy rule: Aligned if: ADDRESS mod TYPESIZE ==
E.g., Is 13 aligned for a word? 13 mod 4 != 0 =» not aligned
Is 14 aligned for a halfword? 14 mod 2 == 0 =» aligned

1/25/16

24

