

Y=S'A+SB

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Simplifying expressions

	Input		Output		
Α	В	C _{in}	S	C _{out}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

•
$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}$$

•
$$C_{out} = BC_{in} + AC_{in} + AB$$

· Simplification reduces complexity: faster, smaller circuit!

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Four (or more?) Variables

		CD							
		00	01	11	10				
	00	0	0	0	0				
AB	01	1	1	1	1				
	11	1	1	1	1				
	10	0	0	0	0				
CS/CoF1	541: Intro t	o Computer	Architectur						

Can you minimize this one?

In AB: B is both {0,1} In CD: C is both {0,1}

Eliminate B, C Thus, we have just AD

Can you minimize this one?

C,D both have {0,1} A has {0,1}

Eliminate A,C,D Thus, we have just B

University of Pittsburgh

32

Four (or more?) Variables

CD

			G	,		
		00	01	11	10	
	00	1	0	0	1	
AB	01	0	0	0	0	
	11	0	0	0	0	
	10	1	0	0	1	

Can you minimize this one?

Combine on top row Combine on bottom row A'B'D' AB'D'

These terms can now combine Thus, we have B'D'

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

In-class Example

- A device called a "7 segment LED digit"
- There are 8 LEDs one for seven "segments" of a numeral and 1 for a decimal point

Problem

- · Given a 3-bit number, draw the corresponding numeral
- E.g., 000 is the numeral 0, 001 is numeral 1 and so forth

Solution

- · Create a Boolean function for each segment. Ignore the decimal point.
- Boolean function over three inputs for the 3-bit number.
- Let's try it!!

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

34

In-class Example

- Create a truth table
- Inputs are numbered i0 to i2 (3 bits)
- Outputs are numbered d0 to d7, corresponding to segments
- "Draw" the numerals by setting d0 to d7 to 1s or 0s.

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

inputs outputs

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

Fill in the truth table for each numeral Numerals 0 to 2 are shown.

Can you complete 3 to 7?

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

inputs

outputs

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

Completed truth table Now, write down the *minimal* (simplified) Boolean functions Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture

	inpu	ts			outputs					
i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

Completed truth table Now, write down the *minimal* (simplified) Boolean functions Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Use a K-map for each output function - d0 to d7

Let's start with d0 We'll only do a few – d0, d3 and d5

Can you do the rest on your own???

CS/CoE1541: Intro. to Computer Architecture

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

11	,	10)

		00	01	11	10
i2	0	1	1	1	1
	1	1	0	1	0

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

 $d3=\overline{i2} + \overline{i1}\overline{i0} + i1\overline{i0}$

CS/CoE1541: Intro. to Computer Architecture

Function	d5

i	1		i	0
-	-	,	-	_

		00	01	11	10
i2	0	1	1	1	0
	1	1	1	1	1

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Function d5

i1, i0

		00	01	11	10	
i2	0	1	1	1	0	
	1	1	1	1	1	

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

 $d5 = \overline{i1} + i0 + i2$

CS/CoE1541: Intro. to Computer Architecture

Building a 1-bit ALU

• ALU = arithmetic logic unit = arithmetic unit + logic unit

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

58

Building a 32-bit ALU

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

59

16)

