Multiplexor (aka MUX)
An example, yet VERY useful circuit!

A S|A|B|Y
0({0|x [0
Y 01 [x |1
1| x |0 |0
B 1) x |1 |1
Y=S’A+SB
S=0
Y=(S) ? B:A;
hen S S D
when S = 4
0: output A A Y
1: output B
B
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
28
Simplifying expressions
Input Output
A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 | 1 |
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

- C,.=ABC, +ABC, + ABC,’ + ABC,
C = BCin + ACin + AB

out —

= Simplification reduces complexity: faster, smaller circuit!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
29

A “tool” to help simplify boolean
expressions
Ka rnau g h ma p Like a “slide rule”: Useful but limited

C...=A'BC,, + AB'C,, + ABC, + ABC,,

A table listing “minterms”
Minterms written in Gray code order

A One var value changes betw. col/row
BC,, 0 1

00 0 0 Build from the initial boolean expr.
Put a “1” where a minterm is true

01 0 E.g..,AB’C;,has a1
Now, to simplify:

" 1 Look for adjacent max rectangular
groups with power of 2 elements.
In such a group, some var is {0,1}

10 0 Eliminate that variable

Here’s another one!

Groups can be vertical too.
out = +AB+ACin They can even “wrap around”
They can also overlap
Diagonals aren’t allowed

C

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

30
. S=ABC, + ABC. +ABC, +ABC,
A A
BC,, 0 1 BC, 0 1
0 . , 0 . i-";"-.
01 0 1 AC,, 01 1 0
11 1 RN 11 0 AR
10 0 i1 i AB 10 Pl 0
S = AB’C,, + ABC,’
Cout = +AB+AC;, + AB’C,’ + ABC,,
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
31

2)

Four (or more?) Variables

CD

m.ﬂ.n-m Can you minimize this one?
0 0

M o o In AB: B is both {0,1}
A bl 0o 0o o o In CD: C is both {0,1}

Bl o N o

Eliminate B, C
m 0 1 1 0 Thus, we have just AD
CD
mmmm Can you minimize this one?

Il o o o o C,D both have {0,1}
= CHEr Ahas {0,1}

m 1 1 1 1 Eliminate A,C,D

m 0 0 0 0 Thus, we have just B

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

32

Four (or more?) Variables

CcD
mmmm Can you minimize this one?
Il o o i :
Combine on top row
AB ﬂ. 0 0 © 0 Combine on bottom row
BB o o o o AB'D’
KM o o 5 AB'D’

These terms can now combine
Thus, we have B’D’

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

33

3)

In-class Example

= A device called a “7 segment LED digit”
= There are 8 LEDs — one for seven “segments” of a numeral

and 1 for a decimal point

= Problem

=
m

» Given a 3-bit number, draw the correspondihg numeral

- E.g., 000 is the numeral 0,
= Solution

001 is numeral 1 and so forth

+ Create a Boolean function for each segment. Ignore the decimal point.
- Boolean function over three inputs for the 3-bit number.

Let’s try it!!

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh
34

d3

| Segments numbered d0 to d7

Hex Digit LED
7 segments, 1 decimal point

State: 0=OFF, 1=ON

|

]
?)
‘

CS/CoE1541: Intro. to Computer Architecture

Turn each segment on/off
? “Draw” numbers 0 to 9

dé6 d5 d4

University of Pittsburgh

4>

|
)

d5s d4

CS/CoE1541: Intro. to Computer Architecture

Numeral 0
01110111

Hex Digit LED
7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

University of Pittsburgh

do d1 d3

———op

Pl
d7 dé6 d5 d4

CS/CoE1541: Intro. to Computer Architecture

Numeral 1
00010100

Hex Digit LED
7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

University of Pittsburgh

5»

do d1 d2 d3

—lT

d7 dé d5 d4

CS/CoE1541: Intro. to Computer Architecture

Numeral 2
10110011

Hex Digit LED
7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

University of Pittsburgh

do d1 d2 d3

—

d5s d4

d7

CS/CoE1541: Intro. to Computer Architecture

Numeral 3
10110110

Hex Digit LED
7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

University of Pittsburgh

6>

do d1

——ep2

——

d3

Numeral 4
11010100

Hex Digit LED
7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d7 dé d5 d4
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
do - d1 d2 d3 Numeral 5
11100110
Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0 to 9

d7 dé d5 d4

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

)

do

d3

——ep2

—l T

Numeral 6
11000111

Hex Digit LED
7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d7 dé d5 d4
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
do - d1 d2 d3 Numeral 7
00110100
— [o
Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
? | State: 0=OFF, 1=ON
l “Draw” numbers 0 to 9
d7 dé d5 d4

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

In-class Example

= Create a truth table

= Inputs are numbered i0 to i2 (3 bits)
= OQutputs are numbered dO to d7, corresponding to segments
= “Draw” the numerals by setting d0 to d7 to 1s or Os.

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

44

inputs

outputs

~
=
)

d0 |d1 (d2 [d3 |d4 |d5 |(d6 |d7

A lAalaAalAa|lO|lO|lO O
=2 O[O |O|=|O

__\oo__\oo

Input: 3-bit number

CS/CoE1541: Intro. to Computer Architecture

Outputs: Segments for the LED hex digit

University of Pittsburgh

9

inputs outputs

d0 |d1 (d2 [d3 |d4 |d5 [d6 |d7
0 1 1 1 0 1 1 1
0 |0 |O 1 0 1 0 0
0 1 1 0 |o 1 1

N
=
S

A lAalAalalO|lO|lO | O
SO0 2O |0

| O |O|~|O|=~|0O

Fill in the truth table for each numeral
Numerals 0 to 2 are shown.
Can you complete 3 to 7?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

inputs outputs
i2 [i1 |i0 |dO [d1 [d2 |d3 |d4 (d5 |d6 |d7
0 |0 |0 |oO 1 1 1 0 1 1 1
0 |0 1 0 |0 |O 1 0 1 0 0
0 1 0 1 0 1 1 0 |0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 |0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 |0 1 1 0
1 1 0 1 1 0 |0 |0 1 1 1
1 1 1 0 |0 1 1 0 1 0 0

Completed truth table
Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

inputs outputs

i2 |i1 |i0 |dO |d1 |d2 |d3 [d4 |d5 |d6 |d7
0 (0 (0O |O 1 1 1 0 1 1 1
0 |0 1 0 |0 |O 1 0 1 0 |o
0 1 0 1 0 1 1 0 |o 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 |0 1 1 0 1 0 1 0 |o
1 0 1 1 1 1 0 |0 1 1 0
1 1 0 1 1 0 |0 |O 1 1 1
1 1 1 0 |0 1 1 0 1 0 |0

Completed truth table
Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i1, i0
00 01 11 10

Use a K-map for each output function — d0 to d7

Let’s start with d0
We’ll only do a few — d0, d3 and d5

Can you do the rest on your own???

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Function d0 i1, i0
00 01 11 10
i2 0|0 0 1 1
111 1 0 1
i2 |i1 i0 |dO |d1 |(d2 [d3 |d4 [d5 |d6 |d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
Function d0 i1, i0
00 01 1" 10
i2 0o 0 [1 1]

I 10 | 1] 0 fi |
i2 |i1 i0 |dO |d1 (d2 [d3 |d4 [d5 |d6 |d7 3 terms
o Jo Jo Jo [1 [1 [1 Jo |1 |1 |4 i2'i1

i2i1’
0 0 1 0 0 0 1 0 1 0 0 i2i0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

d0=i2i1 + i2i1 + i2i0

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

i1, i0

01

Function d3

10

1"

00

d2 [d3 |(d4 |d5 |d6 |d7

i2

do |d1

i0

i1

i2

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

i1, i0

01

Function d3

10

1"

00

d2 [d3 (d4 |d5 |d6 |d7

i2

do |d1

i0

i1

i2

d3=i2 +i1i0 + i1i0

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

13)

i1, i0

01

Function d5

10

1"

00

d2 [d3 (d4 |dS [d6 |d7

i2

do |d1

i0

i1

i2

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

i1, i0

01

Function d5

10

']

1"

00

d2 |d3 |(d4 [d5 |d6 |d7

i2

do |d1

i0

i1

i2

d5=i1 +i0 + i2

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

14)

Completed Circuit with all functions d0 to d7

Inputs
HME .:
I I I | :
\
S Os 8 = s

Outputs to the LED hex digit

See example: LEDhexdigit.circ

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

5]

A 32-bit MUX

Use 32 1-bit muxes
Each mux selects 1 bit
S is connected to each mux

Select Select
AZ2 A3l ——f
M M
u B\ ¢ u cat
B 32 X B3t — | X
—/
A30 —*
M
u —C30
X .
B30 — :
A0 —
M
u ——=co
o
a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array

of 32 1-bit multiplexors

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

57

Building a 1-bit ALU

= ALU = arithmetic logic unit = arithmetic unit + logic unit

Operation
T
) D

Result

CS/CoE1541: Intro. to Computer Architecture

Operation
Carryin ‘

JU

-l
1 — Result
" 2
|
CarryOut

University of Pittsburgh

58
= = =
Building a 32-bit ALU
Operation
Carryln
a0 Carryln
bo ALUO Result0
— " carryout
at—| Carryln
b1 ALU1 Result1
—| caryout
a2 Carryln
b2 ALU2 Result2
CarryOut
a31—» Carryln
—_—
b3 ALU31 Result31
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
59

Implementing “sub”

Binvert

Operation
Carryln ’

Binvert=1
Carryln=1 for 1st 1-bit ALU
Operation=2

)

— Result

100

CS/CoE1541: Intro. to Computer Architecture

CarryOut

University of Pittsburgh

60
Implementing NAND and NOR
Ainvert Operation
Binvert Carryln
NOR: a 0
NOT (A OR B) N\
by DeMorgan’s Law: 1 — / 0
(NOT A) AND (NOT B)
Thus, 4 1 — Result
Operation=0, :j >
Ainvert=1, h
Binvert=1 b | OW
+ 2
And, NAND??? '
CarryOut
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
61

Implementing SLT (set-less-than)

Alnvert Operation

| Binvert carryln
h

Less

Carryout

1-bit ALU for bits 0~30

CS/CoE1541: Intro. to Computer Architecture

Ainvert Operation
‘ Binvert carryln

Less

Overflow
detection

1-bit ALU for bit 31

University of Pittsburgh

62
Implementing SLT (set-less-than)
Binvert Operation
Ainvert
Carryln
||
a0—| Carryin Result0
SLT uses subtraction it ¢
slt $t0,$t1,$t2 Carryout
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative 1 l l l
al—s| Carryln Result1
b1 — ALU1
00— Less
Setting the control Camyout
perform subtraction (Cin=1,Binvert=1) l { l
select Less as output (Operation=3) o] ! Ganyn -
ALU31’s Set connected to ALUO Less b2—+ ALU2
00— L
Ca:ys(s)ut
: ; ; Carryln ;
Why do we need Set? Could ﬁar,ym L Resunat
we use just the Result31? b3t—s ALU31 Set
00— Less Overflow
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
63

Supporting BEQ and BNE

BEQ uses subtraction
beq $t0,$t1,LABEL
perform $t0-$t1
result=0 = equality

Setting the control
subtract (Cin=1,Binvert=1)
select result (operation=2)
detect zero result

“zero detector”

/

) b
- Zero

Bnegate Operation
Ainvert
bl
a0—{ Carryin Resultd
b0—= ALUO esy
Less L —
CarryOut
il
al— Carryln
b1 ALU1 Result1
0—» Less
CarryOut
a2— Carryln Result2
b2—» ALU2 oo
0—» Less
CarryOut
: ; ‘ l Carryln ; ;
a3l—s| Camyn |-ReSult31
b31— ALU31 Set
0—» Less

Overflow

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

64
Abstracting ALU
ALU operation
a—
Zero
ALU Result
Overflow
b —»
CarryOut
= Note that ALU is a combinational logic
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
65

