
1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
28

Multiplexor (aka MUX)
An example, yet VERY useful circuit!

A

Y

B

S
Y = (S) ? B:A;

0

1

when S =
 0: output A
 1: output B

 S A B Y

 0 0 x 0
 0 1 x 1
 1 x 0 0
 1 x 1 1

Y=S’A+SB
S=0 S=1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
29

Simplifying expressions

§  Cout = A’BCin + AB’Cin + ABCin’ + ABCin

§  Cout = BCin + ACin + AB

§  Simplification reduces complexity: faster, smaller circuit!

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

2

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
30

Karnaugh map

A
0 1

00

01

11

10 1 0

1

1

0 0

0

1 BCin

AB

ACin

Cout = BCin+AB+ACin

BCin

A “tool” to help simplify boolean
expressions
Like a “slide rule”: Useful but limited

Build from the initial boolean expr.
Put a “1” where a minterm is true

E.g.., AB’Cin has a 1

Now, to simplify:
Look for adjacent max rectangular
groups with power of 2 elements.
In such a group, some var is {0,1}
Eliminate that variable

Here’s another one!
Groups can be vertical too.
They can even “wrap around”
They can also overlap
Diagonals aren’t allowed

A table listing “minterms”
Minterms written in Gray code order
One var value changes betw. col/row

Cout = A’BCin + AB’Cin + ABCin’ + ABCin

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
31

§  Cout = A’BCin + AB’Cin + ABCin’ + ABCin
§  S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin

A
0 1

00

01

11

10 1 0

1

1

0 0

0

1 BCin

AB

ACin

Cout = BCin+AB+ACin

BCin

0 1

1

0

1 0

1

0

A
0 1

00

01

11

10

BCin

S = A’B’Cin + A’BCin’
 + AB’Cin’ + ABCin

3

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
32

Four (or more?) Variables

 CD

AB

00 01 11 10
00 0 0 0 0
01 0 0 0 0
11 0 1 1 0
10 0 1 1 0

Can you minimize this one?

In AB: B is both {0,1}
In CD: C is both {0,1}

Eliminate B, C
Thus, we have just AD

 CD

AB

00 01 11 10
00 0 0 0 0
01 1 1 1 1
11 1 1 1 1
10 0 0 0 0

Can you minimize this one?

C,D both have {0,1}
A has {0,1}

Eliminate A,C,D
Thus, we have just B

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
33

Four (or more?) Variables

 CD

AB

00 01 11 10
00 1 0 0 1
01 0 0 0 0
11 0 0 0 0
10 1 0 0 1

Can you minimize this one?

Combine on top row
Combine on bottom row

A’B’D’
AB’D’

These terms can now combine
Thus, we have B’D’

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

4

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
34

In-class Example

§  A device called a “7 segment LED digit”
§  There are 8 LEDs – one for seven “segments” of a numeral

and 1 for a decimal point

§  Problem

•  Given a 3-bit number, draw the corresponding numeral
•  E.g., 000 is the numeral 0, 001 is numeral 1 and so forth

§  Solution
•  Create a Boolean function for each segment. Ignore the decimal point.
•  Boolean function over three inputs for the 3-bit number.

§  Let’s try it!!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Segments numbered d0 to d7

5

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 0
 0 1 1 1 0 1 1 1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 1
 0 0 0 1 0 1 0 0

6

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 2
 1 0 1 1 0 0 1 1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 3
 1 0 1 1 0 1 1 0

7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 4
 1 1 0 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 5
 1 1 1 0 0 1 1 0

8

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 6
 1 1 0 0 0 1 1 1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5 d6 d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
 State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 7
 0 0 1 1 0 1 0 0

9

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
44

In-class Example

§  Create a truth table
§  Inputs are numbered i0 to i2 (3 bits)
§  Outputs are numbered d0 to d7, corresponding to segments
§  “Draw” the numerals by setting d0 to d7 to 1s or 0s.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

inputs outputs

Input: 3-bit number Outputs: Segments for the LED hex digit

10

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

inputs outputs

Fill in the truth table for each numeral
Numerals 0 to 2 are shown.
Can you complete 3 to 7?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

inputs outputs

Completed truth table
Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

11

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

inputs outputs

Completed truth table
Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0

1

i1, i0

i2

Use a K-map for each output function – d0 to d7

Let’s start with d0
We’ll only do a few – d0, d3 and d5

Can you do the rest on your own???

12

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 0 0 1 1

1 1 1 0 1

i1, i0

i2

Function d0

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 0 0 1 1

1 1 1 0 1

i1, i0

i2

Function d0

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

3 terms
i2’i1
i2i1’
i2i0

d0=i2i1 + i2i1 + i2i0

13

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 1

1 1 0 1 0

i1, i0

i2

Function d3

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 1

1 1 0 1 0

i1, i0

i2

Function d3

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

d3=i2 + i1i0 + i1i0

14

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 0

1 1 1 1 1

i1, i0

i2

Function d5

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 0

1 1 1 1 1

i1, i0

i2

Function d5

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

d5=i1 + i0 + i2

15

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Completed Circuit with all functions d0 to d7

Inputs

Outputs to the LED hex digit

See example: LEDhexdigit.circ

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
57

A 32-bit MUX Use 32 1-bit muxes
Each mux selects 1 bit
S is connected to each mux

16

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
58

Building a 1-bit ALU

§  ALU = arithmetic logic unit = arithmetic unit + logic unit

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
59

Building a 32-bit ALU

17

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
60

Implementing “sub”

Binvert=1
CarryIn=1 for 1st 1-bit ALU
Operation=2

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
61

Implementing NAND and NOR

NOR:
NOT (A OR B)
by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus,
 Operation=0,
 Ainvert=1,
 Binvert=1

And, NAND???

18

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
62

Implementing SLT (set-less-than)

1-bit ALU for bits 0~30 1-bit ALU for bit 31

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
63

Implementing SLT (set-less-than)

SLT uses subtraction
slt $t0,$t1,$t2
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control
perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALU0 Less

Why do we need Set? Could
we use just the Result31?

19

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
64

Supporting BEQ and BNE

“zero detector” BEQ uses subtraction
beq $t0,$t1,LABEL
perform $t0-$t1
result=0 è equality

Setting the control
subtract (Cin=1,Binvert=1)
select result (operation=2)
detect zero result

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
65

Abstracting ALU

§  Note that ALU is a combinational logic

