
CS 447: Assembly language programming and computer organization University of Pittsburgh
29

Simplifying expressions

§  Cout = A’BCin + AB’Cin + ABCin’ + ABCin

§  Cout = BCin + ACin + AB

§  Simplification reduces complexity: faster, smaller circuit!

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

CS 447: Assembly language programming and computer organization University of Pittsburgh
30

Karnaugh map

A
0 1

00

01

11

10 1 0

1

1

0 0

0

1 BCin

AB

ACin

Cout = BCin+AB+ACin

BCin

A “tool” to help simplify boolean
expressions
Like a “slide rule”: Useful but limited

Build from the initial boolean expr.
Put a “1” where a minterm is true

E.g.., AB’Cin has a 1

Now, to simplify:
Look for adjacent max rectangular
groups with power of 2 elements, with
at least one unique variable.
In such a group, some var is {0,1}
Eliminate that variable

 Here’s another one!
Groups can be vertical too.
They can even “wrap around”
Diagonals aren’t allowed

A table listing “minterms”
Minterms written in Gray code order
One var value changes betw. col/row

Cout = A’BCin + AB’Cin + ABCin’ + ABCin

CS 447: Assembly language programming and computer organization University of Pittsburgh
31

§  Cout = A’BCin + AB’Cin + ABCin’ + ABCin
§  S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin

A
0 1

00

01

11

10 1 0

1

1

0 0

0

1 BCin

AB

ACin

Cout = BCin+AB+ACin

BCin

0 1

1

0

1 0

1

0

A
0 1

00

01

11

10

BCin

S = A’B’Cin + A’BCin’
 + AB’Cin’ + ABCin

CS 447: Assembly language programming and computer organization University of Pittsburgh
32

Four (or more?) Variables

 CD

AB

00 01 11 10
00 0 0 0 0
01 0 0 0 0
11 0 1 1 0
10 0 1 1 0

Can you minimize this one?

In AB: B is both {0,1}
In CD: C is both {0,1}

Eliminate B, C
Thus, we have just AD

 CD

AB

00 01 11 10
00 0 0 0 0
01 1 1 1 1
11 1 1 1 1
10 0 0 0 0

Can you minimize this one?

C,D both have {0,1}
A has {0,1}

Eliminate A,C,D
Thus, we have just B

CS 447: Assembly language programming and computer organization University of Pittsburgh
33

Four (or more?) Variables

 CD

AB

00 01 11 10
00 1 0 0 1
01 0 0 0 0
11 0 0 0 0
10 1 0 0 1

Can you minimize this one?

Combine on top row
Combine on bottom row

A’B’D’
AB’D’

These terms can now combine
Thus, we have B’D’

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

CS 447: Assembly language programming and computer organization University of Pittsburgh
34

Multiplexor (aka MUX)

A

Y

B

S
Y = (S) ? B:A;

0

1

when S =
 0: output A
 1: output B

 S A B Y

 0 0 x 0
 0 1 x 1
 1 x 0 0
 1 x 1 1

Y=S’A+SB
S=0 S=1

CS 447: Assembly language programming and computer organization University of Pittsburgh
35

A 32-bit MUX Use 32 1-bit muxes
Each mux selects 1 bit

The same 1-bit Select (S) is
connected to each mux

CS 447: Assembly language programming and computer organization University of Pittsburgh
36

Building a 1-bit ALU

§  ALU = arithmetic logic unit = arithmetic unit + logic unit

Let’s start small: Choose (select)
betw. AND and OR

Now, introduce addition to ALU

CS 447: Assembly language programming and computer organization University of Pittsburgh
37

Building a 32-bit ALU

Can you build a 2-bit
ALU that does +, AND, OR?

Let's try it!

CS 447: Assembly language programming and computer organization University of Pittsburgh
38

Implementing “sub”

Binvert=1
CarryIn=1 for 1st 1-bit ALU
Operation=2

CS 447: Assembly language programming and computer organization University of Pittsburgh
39

Implementing NAND and NOR

NOR:
NOT (A OR B)
by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus,
 Operation=0,
 Ainvert=1,
 Binvert=1

And, NAND???

CS 447: Assembly language programming and computer organization University of Pittsburgh
40

Implementing SLT (set-less-than)

1-bit ALU for bits 0~30 1-bit ALU for bit 31

CS 447: Assembly language programming and computer organization University of Pittsburgh
41

Implementing SLT (set-less-than)

SLT uses subtraction
slt $t0,$t1,$t2
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control
perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALU0 Less

Why do we need Set? Could
we use just the Result31?

CS 447: Assembly language programming and computer organization University of Pittsburgh
42

Supporting BEQ and BNE

“zero detector” BEQ uses subtraction
beq $t0,$t1,LABEL
perform $t0-$t1
result=0 è equality

Setting the control
subtract (Cin=1,Binvert=1)
select result (operation=2)
detect zero result

