Simplifying expressions

Input Output
A B Ci, S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 I 1 I
1 0 0 1 0
1 0 1 0 1
1 1 0 0 H
1 1 1 1 I 1 I

C
= C

= ABC, + AB'C, + ABC,’ + ABC,,
=BC,, + AC,, + AB

out

out

= Simplification reduces complexity: faster, smaller circuit!

CS 447: Assembly language programming and computer organization University of Pittsburgh

Karnaugh map A

C..=ABC,, +AB'C, +ABC,’ +ABC,,

A
BC, 0 1
00 0 0
01 0 =
11 1 1t
10 0 SN

C

out

AC,

+AB+AC,

CS 447: Assembly language programming and computer organization

IN

A “tool” to help simplify boolean
expressions
Like a “slide rule”: Useful but limited

A table listing “minterms”
Minterms written in Gray code order
One var value changes betw. col/row

Build from the initial boolean expr.
Put a “1” where a minterm is true

E.g..,AB’C, has a1

Now, to simplify:

Look for adjacent max rectangular
groups with power of 2 elements, with
at least one unique variable.

In such a group, some var is {0,1}
Eliminate that variable

Here’s another one!

Groups can be vertical too.
They can even “wrap around”
Diagonals aren’t allowed

University of Pittsburgh

30

C..=ABC, +AB'C, + ABC, +ABC,,
- S=ABC,+ABC, +ABC, +ABC,

A A
BC,, 0 1 BC, 0 1
SAusmmmm,
00 0 0 00 0 =1
01 0 I AC. 01 Pogo 0
YT 2 T
11 1 i1 i 11 0 D
..,, Sessmans
10 0 ‘11| AB 10 P 0
S=ABC, +ABC,/
—_ J)
Cout ~ +AB+ACin + AB Cin + ABCin
CS 447: Assembly language programming and computer organization University of Pittsburgh

31

Four (or more?) Variables

CD
mmmm Can you minimize this one?
0 0

m 0 0 In AB: B is both {0,1}
AB m 0 0 0 0 In CD: C is both {0,1}

W o DA o

Eliminate B, C
m 0 1 1 0 Thus, we have just AD
CD
mmmm Can you minimize this one?

I o o o o C.D both have {0,1}
ap O 1 1 1 A has {0.1}

Bl Eliminate A,C,D

m 0 0 0 0 Thus, we have just B

CS 447: Assembly language programming and computer organization University of Pittsburgh

32

Four (or more?) Variables

CD
mmmm Can you minimize this one?
I o o P .
Combine on top row
AB ﬂ. 0 0 0 0 Combine on bottom row
Kl c o o o ABD’
Dl o o [AB'D’

These terms can now combine
Thus, we have B’D’

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

CS 447: Assembly language programming and computer organization University of Pittsburgh
33

Multiplexor (aka MUX)

A S| A[B|Y
0(0|x ||O
A 01 |x |1
1| x |0 (|0
B 1 x[1 |1
Y=S’A+SB
S=0
Y =(S) ? B:A;
s — >
when S = A —
0: output A Y
1: output B
B
CS 447: Assembly language programming and computer organization University of Pittsburgh

34

A 32-bit MUX

Use 32 1-bit muxes
Each mux selects 1 bit

Select Select
32
A —\» A31 —»
M M
u |32\, ¢ u - c3
B 22\ B3 —| *
The same 1-bit Select (S) is
A30 —* " connected to each mux
u C30
B30 — | *
A0 —»
M
u co
X
BO —»
a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array

of 32 1-bit multiplexors

CS 447: Assembly language programming and computer organization

University of Pittsburgh

35

Building a 1-bit ALU

= ALU = arithmetic logic unit = arithmetic unit + logic unit

Operation
Carryln ‘

Operation a—t1eo— \ /Oj\

a
Bt 51D
> -
Result 1 » Result
1
) - —

Let’s start small: Choose (select)
betw. AND and OR '

CarryOut

2 Now, introduce addition to ALU

CS 447: Assembly language programming and computer organization University of Pittsburgh

36

Building a 32-bit ALU

Operation
Carryln
|]
a0 | Carryln
bo ALUO » Result0
— " carryOut
—————
Y /
al —| Carryln
. . b1 ALU1 > Result1
Can you build a 2-bit | camyout
ALU that does +, AND, OR?
Y Y
a2__,| Carryln
Let's t it' ALU2 > Result2
ry b2 — CarryOut
a31—,| Carryln
ALUS31 > Result31

b31—s

CS 447: Assembly language programming and computer organization University of Pittsburgh

Implementing “sub”

Binvert Operation
Carryln

U

Binvert=1
Carryln=1 for 15t 1-bit ALU

» Result

Operation=2

’
') @

Y

CarryOut

CS 447: Assembly language programming and computer organization

University of Pittsburgh

38

Implementing NAND and NOR

Ainvert Operation

‘ Binvert Carryln ‘

NOR:

NOT (A OR B)

by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus, I 1 » Result
Operation=0,
—
g +

Ainvert=1,
Binvert=1 b

And, NAND???

CarryOut

CS 447: Assembly language programming and computer organization University of Pittsburgh

Implementing SLT (set-less-than)

Ainvert Operation
Binvert carryin |

0

100

Result
b — 0
2
1
Less 3
CarryOut

1-bit ALU for bits 0~30

CS 447: Assembly language programming and computer organization

Ainvert
Binvert

Operation

Carryln ‘

Less

I

0

+HOO

Y

Overflow
detection

1-bit ALU for bit 31

Result

Set

Overflow

University of Pittsburgh

40

Implementing SLT (set-less-than)

SLT uses subtraction

slt $t0,5t1,$t2

$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALUO Less

Why do we need Set? Could
we use just the Result31?

Operation

» Result0

» Result1

» Result2

» Result31

Binvert
Ainvert
Carryln
'y \
a0—{ Caryln
b0 — ALUO
> Less
CarryOut
'y
al—{ Carryln
b1 —» ALUA
00— Less
CarryOut
: |
a2 —» Carryln
b2 — ALU2
00— Less
CarryOut
P : ¢ Carryln
] 1
a31—| Carryln
b31—s ALU31
00— Less

Set
» Overflow

CS 447: Assembly language programming and computer organization

University of Pittsburgh

41

Supporting BEQ and BNE

BEQ uses subtraction
beq $t0,$t1,LABEL
perform $t0-$t1
result=0 = equality

Setting the control
subtract (Cin=1,Binvert=1)
select result (operation=2)
detect zero result

Bnegate Operation
Ainvert
Phb
a0 — Carryln Resulto
esu o
o D ? “zero detector”
CarryOut

—]

]

al —»
b1 —

00—

Carryln
ALU1
Less
CarryOut

Resulti | _

1N

a2 —»
b2 —

00—

Carryln
ALU2
Less
CarryOut

Result2

Zero

l

: : : E Carryin
— |

a31—
b31—

00—

Carryln
ALU31
Less

Result31 . .

Set
> Qverflow

CS 447: Assembly language programming and computer organization

University of Pittsburgh
42

