
Single cycle: All “steps” of executing an instruction are done  
in 1 clock cycle. The cycle is long to accommodate longest path. 

Single cycle: LW is the longest instruction (worst case) 



Multi cycle: Execute instruction in steps; one step done per 
clock cycle. The longest step determines cycle time.  

Fetch Decode/Reg Rd Execute Memory 

Writeback 

Multi cycle: 5 steps (cycles) to execute instruction 



Pipelining 

° How do we improve on the performance of the multi 
cycle implementation? 

° Key observation -  
• we can be doing multiple things at once 

° Pipelining - 
•  implementation technique to execute multiple 

instructions simultaneously 

Pipelining is Natural! 

° Laundry Example 
° Ann, Brian, Cathy, Dave  

each have one load of clothes  
to wash, dry, and fold 

° Washer takes 30 minutes 
 
° Dryer takes 30 minutes 
 
° “Folder” takes 30 minutes 

 
° “Stasher” takes 30 minutes 

to put clothes into drawers 

A B C D 



Sequential Laundry 

° We have four loads of laundry to do (A,B,C,D) 
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Sequential Laundry 

° First, we wash…. 
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Sequential Laundry 

° Then we dry…. 
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Sequential Laundry 

° Now we fold…. 
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Sequential Laundry 

° Finally we put the clothes away…. 
°  It took us two hours to do one laundry…yikes! 
° We have three loads remaining! 

30 T 
a 
s 
k 
 
O 
r 
d 
e 
r 

B 

C 
D 

A Time 
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

6 PM 7 8 9 10 11 12 1 2 AM 

Sequential Laundry 

° Whew, it’s 10 pm already and two loads to go 

30 T 
a 
s 
k 
 
O 
r 
d 
e 
r 

B 

C 
D 

A Time 
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

6 PM 7 8 9 10 11 12 1 2 AM 



Sequential Laundry 

° We finish at 2 AM (half asleep) 
° Sequential laundry takes 8 hours for 4 loads 
°  If they pipelined it, how long would laundry take?  
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Pipelined Laundry: Start work ASAP 

° Let’s start to wash….  
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Pipelined Laundry: Start work ASAP 

° Begin first load with washer  
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Pipelined Laundry: Start work ASAP 

° Move first load to dryer 
° Washer is empty, so we can start second load  
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Pipelined Laundry: Start work ASAP 

° Fold first load, dry second load, start third load 
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Pipelined Laundry: Start work ASAP 

° Stash first load, fold second, dry third, wash fourth 
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Pipelined Laundry: Start work ASAP 

° Pipelined laundry takes 3.5 hours for 4 loads!  
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Pipelining Lessons 

°  Pipelining doesn’t help 
latency of single task, it 
helps throughput of entire 
workload 

°  Multiple tasks operating 
simultaneously using 
different resources 

°  Potential speedup = 
Number pipe stages 

°  Pipeline rate limited by 
slowest pipeline stage 

°  Unbalanced lengths of 
pipe stages reduces 
speedup 

°  Time to “fill” pipeline and 
time to “drain” it reduces 
speedup 

°  Stall for Dependences 
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Pipelining for Instruction Execution 

° Same concept applies for instructions! 
° We can pipeline instruction execution 
° For MIPS, there are five classic steps: 

• FETCH: Fetch instruction from memory  
• DECODE: Read registers while decoding instruction 
• EXECUTE: Execute operation / calculate an address 
• MEMORY: Access an operand in memory (L/S) 
• WRITE BACK: Write result into the register file 

Example - The Five Steps for a Load 

° Fetch: Instruction Fetch 
• Fetch the instruction from the Instruction 

Memory 
° Reg/Dec: Registers Fetch  and Instruction Decode 
° Exec: Calculate the memory address 
° Mem: Read the data from the Data Memory 
° Wr: Write the data back to the register file 



Pipelining for Instruction Execution - Example 

° Let’s consider a single-cycle vs. pipelined 
implementation of simple MIPS 

   Inst.  Reg  ALU  Mem.  Reg   Total 
Class   Fetch  Read  Oper  Acc.  Write   Time 
Load   2 ns  1 ns  2 ns  2 ns  1 ns   8 ns 
Store   2 ns  1 ns  2 ns  2 ns    7 ns 
R-type   2 ns  1 ns  2 ns   1 ns   6 ns 
Branch  2 ns  1 ns  2 ns     5 ns 
 
°  For single cycle implementation, the cycle time is stretched to 

accommodate the slowest instruction 
°  Cycle time: 8 ns for single cycle implementation 

Single Cycle Implementation 

  Num.    Instruction 
  I1    lw $1,100($0) 
  I2    lw $2, 200($0) 
  I3    lw $3, 300($0) 

 
 
 
I1  
 
I2 
 
I3 

Time for each instruction is 8 ns - slowest time (for load) 
Time between 1st and 4th instruction is 3 * 8 ns = 24 ns 
Total time = 24 ns 

Fetch Reg Reg ALU Memory 

Fetch Reg Reg ALU Memory 

F 
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Pipelined Implementation 

  Num.    Instruction 
  I1    lw $1,100($0) 
  I2    lw $2, 200($0) 
  I3    lw $3, 300($0) 

 
 
 
I1  
 
I2 
 
I3 

Each step takes 2 ns (even reg file access) - slowest step is 2 ns 
Time between 1st and 4th instruction: 3 * 2 ns = 6 ns 
Total time for the three instructions = 14 ns 

Fetch Reg Reg ALU Memory 
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Fetch Reg Reg ALU Memory 

Fetch Reg Reg ALU Memory 

Why Pipeline? Because the resources are there! 
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How does Pipelining Help? 
°  Improves instruction throughput 
° Assuming perfectly balanced stages (all stages 

take same amount of time): 
Time betw. instructions pipeline = 
   Time between instructions nonpipelined  
                     Number of pipeline stages 
Example: 8 ns for nonpipelined machine 
What’s the time for five stage pipelined machine? 
      8 ns / 5 = 1.6 ns  

Wait Just One Minute!!! 
Under ideal conditions - 
  Speedup from pipelining equals the number of    

 pipeline stages 
  speedup  = time nonpipelined / time pipelined 

     = 8 ns / 1.6 ns  
    = 5 

But, remember the maximum stage latency is 2 ns 
Hence, the speedup in this case is really: 
   speedup  = time nonpipelined / time pipelined 
     = 8 ns / 2 ns 
    = 4 



Wait Just One More Minute!!! 
° Total time for the three loads was  

• 14 ns on pipelined version 
• 24 ns on nonpipelined version 

How can you claim a 4 times speedup? 
  (Speedup here is 24 ns / 14 ns = 1.7) 

 
Consider 1003 instructions: 
   Nonpipelined: 1000 * 8 ns + 24 ns = 8024 ns 
   Pipelined: 1000 * 2 ns  + 14 ns = 2014 ns 
   8,024 ns / 2,014 ns = 3.98  
     = approx 8 ns / 2 ns 

The Value of Pipelining 
Improves performance - 
   By increasing instruction throughput 
   As opposed to decreasing execution time!!! 
Consider our example for 1003 instructions: 
  Total program time is: 2,014 ns 
  But each instruction takes  
   # pipe stages * cycle time = 
         = 5 * 2 ns  
         = 10 ns 

This is longer than 8 ns for the single cycle version! 



Pipelining Complications 
° Situations when next instruction can not execute in 

the next cycle! 
° Pipeline hazards - when an instruction is unable to 

execute (or advance in the pipeline) 
° Three types of hazards: 
   Structural hazards  
   Data hazards  
   Control hazards 

Structural Hazards 
° Structural hazards: attempt to use the same 

resource two different ways at the same time 
° Laundry example: 

• E.g., combined washer/dryer would be a 
structural hazard or folder busy doing 
something else (watching TV) 

°  Instruction example: 
• With a single memory 

-  Can be fetching an instruction 
-  At same time doing a load 

• Only one read: a structural hazard 



Structural Hazards (assuming a single memory) 
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Structural Hazards (assuming a single memory) 



Dealing with Structural Hazards 

° Arise from lack of resources 
° We can eliminate the hazard by adding more 

resources! 
•  In the previous example, we add a second 

memory (in effect, we will do this with cache - 
later in the semester) 

• Fetch and memory data read can happen at the 
same time 

° Another solution: 
• Stall instruction until resource available 

Data Hazards 

° Data hazards: attempt to use item before it is ready 
° Laundry example: 

• E.g., one sock of pair in dryer and one in 
washer; can’t fold until get sock from washer 
through dryer 

°  Instruction execution: 
•  Instruction depends on result of prior 

instruction still in the pipeline 
   add $s0,$t0,$t1 

   sub $t2,$s0,$t3 
$s0 produced by first add but needed 
by the second add 



Data Hazards 

° Are data hazards common? 
       You bet!!! 
° Programs represent data flow between instructions 

and that data flow creates these dependences 
° Hence, we must do something about data hazards!! 
° One solution: Stall until value needed is written 

back to the register file and we can read it 
° Penalty is too high with this solution 

  CC0  CC1   CC2    CC3     CC4  CC5  CC6  CC7  CC8 
add $s0,$t0,$t1  F       ID       EX       MEM    WB 
sub $t2,$s0,$t3    
 
 

Effect of Stalling on Data Hazard 



  CC0  CC1   CC2    CC3     CC4  CC5  CC6  CC7  CC8 
add $s0,$t0,$t1  F       ID       EX       MEM    WB 
sub $t2,$s0,$t3   F    ID  EX  MEM  WB 
 
 

Effect of Stalling on Data Hazard 

Stall Stall Stall 

  CC0  CC1   CC2    CC3     CC4  CC5  CC6  CC7  CC8 
add $s0,$t0,$t1  F       ID       EX       MEM    WB 
sub $t2,$s0,$t3   F    ID  EX  MEM  WB 
 
 
Improvement: Register Write in First Half of Cycle, Register Read in Second Half 

  CC0   CC1   CC2 CC3  CC4  CC5  CC6  CC7 
add $s0,$t0,$t1  F        ID       EX  MEM  WB 
sub $t2,$s0,$t3   
 
 

Effect of Stalling on Data Hazard 

Stall Stall Stall 



  CC0  CC1   CC2    CC3     CC4  CC5  CC6  CC7  CC8 
add $s0,$t0,$t1  F       ID       EX       MEM    WB 
sub $t2,$s0,$t3   F    ID  EX  MEM  WB 
 
 
Improvement: Register Write in First Half of Cycle, Register Read in Second Half 

  CC0   CC1   CC2 CC3  CC4  CC5  CC6  CC7 
add $s0,$t0,$t1  F        ID       EX  MEM  WB 
sub $t2,$s0,$t3             F   ID  EX  MEM  WB 
 
 
 

Effect of Stalling on Data Hazard 

Stall Stall 

Stall Stall Stall 

  CC0  CC1   CC2    CC3     CC4  CC5  CC6  CC7  CC8 
add $s0,$t0,$t1  F       ID       EX       MEM    WB 
sub $t2,$s0,$t3   F    ID  EX  MEM  WB 
 
Improvement: Register Write in First Half of Cycle, Register Read in Second Half 

  CC0   CC1   CC2 CC3  CC4  CC5  CC6  CC7 
add $s0,$t0,$t1  F        ID       EX  MEM  WB 
sub $t2,$s0,$t3             F   ID  EX  MEM  WB 
 
 
 

Effect of Stalling on Data Hazard 
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A Better Solution: Forwarding 

° Write/Read register file in different half of cycle 
° Forwarding on ALU output 

• Add path from ALU back to one of its inputs! 

A Better Solution: Forwarding 

° Write/Read register file in different half of cycle 
° Forwarding on ALU output 

• Add path from ALU back to one of its inputs! 
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Time 

The value needed by the 
sub isn’t read from the reg 
file - it comes directly from 
the result output from doing 
the add operation 

add $s0,$t0,$t1 

sub $t2,$s0,$t3 

Def: Forwarding passes result from later stage to an earlier one 
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Forwarding Memory Result 
° Just like we forward from ALU 

• The result from a load may be needed by the 
very next instruction 

• Hence, we need a forwarding path 

Forwarding Memory Result 
° Just like we forward from ALU 

• The result from a load may be needed by the 
very next instruction 

• Hence, we need a forwarding path 
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sub $t2,$s0,$t3 
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Have to stall one cycle - the 
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until DM  
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Control Hazards 
° Control hazards: attempt to make a decision before 

condition is evaulated 
° Laundry example: 

• E.g., washing football uniforms and need to get 
proper detergent level; need to see after dryer 
before next load in 

°  Instruction execution: 
• Branch instructions 
   beq $1,$2,L0 

   add $4,$5,$6 

   ... 

  L0:  sub $7,$8,$9 

Which instruction do we 
fetch next into the pipe 
following the branch?? 

Dealing with Control Hazards 

° We can stall until branch outcome is known 
• Once branch is known, then fetch 
• But this is wasteful 
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lw $3,300($0) 

2 4 6 8 10 12 14 
Time (ns) 

2ns 

4ns 

2ns 



Dealing with Control Hazards - Predict Branch 

° Predict that the branch is not taken 
• Attempt to get next instruction from the fall thru 

of the branch (i.e., next sequential address) 
° We are gambling that the branch isn’t ever going to 

be taken 
° When we’re right - there is no stall 
° But what happens when we’re wrong???? 

Predicting Branch as Not Taken 
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The three implementations 

CPU time = IC × CPI × CC 
 
For same instruction set (IC same): 

 Single cycle: CPI = 1, long CC 
 Multi cycle: CPI>1, probably 3-4, short CC 
 Pipelined: CPI>1, probably 1.2-1.4, short CC 

Let’s compare 

° Suppose 5-step MIPS implementation 
• Single cycle: 10 ns 
• Multi-cycle: 3.9 CPI, 2 ns 
• Pipelined: 1.2 CPI, 2ns 

° What is the speedup of 
• Multi-cycle vs. single cycle 
• Pipelined vs. multi-cycle 
• Pipelined vs. single cycle 



Multi-cycle vs single cycle 

° CPU time single = IC × 1 × 10ns = IC × 10 ns 
° CPU time multi = IC × 3.9 × 2ns = IC × 7.8 ns 

° Speedup of multi vs. single cycle 
 Speedup = IC × 10 ns / IC × 7.8 ns = 
        = 10 ns / 7.8 ns 
        = 1.28x 

Pipelined vs. multi cycle 

° CPU time multi-cycle = IC × 3.9 × 2ns = IC × 7.8ns 
° CPU time pipeline = IC × 1.2 × 2ns = IC × 2.4ns 

° Speedup of pipelined vs. multi-cycle 
Speedup = IC × 7.8ns / IC × 2.4ns = 3.25x 
 

°  Speedup of pipelined vs. single cycle 
Speedup = IC × 10ns / IC × 2.4ns = 4.17x 



 
 

The End 
 

Thank you! 


