
Single cycle: All “steps” of executing an instruction are done
in 1 clock cycle. The cycle is long to accommodate longest path.

Single cycle: LW is the longest instruction (worst case)

Multi cycle: Execute instruction in steps; one step done per
clock cycle. The longest step determines cycle time.

Fetch Decode/Reg Rd Execute Memory

Writeback

Multi cycle: 5 steps (cycles) to execute instruction

Pipelining

° How do we improve on the performance of the multi
cycle implementation?

° Key observation -
• we can be doing multiple things at once

° Pipelining -
•  implementation technique to execute multiple

instructions simultaneously

Pipelining is Natural!

° Laundry Example
° Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

° Washer takes 30 minutes

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes

to put clothes into drawers

A B C D

Sequential Laundry

° We have four loads of laundry to do (A,B,C,D)

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Sequential Laundry

° First, we wash….

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Sequential Laundry

° Then we dry….

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Sequential Laundry

° Now we fold….

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Sequential Laundry

° Finally we put the clothes away….
°  It took us two hours to do one laundry…yikes!
° We have three loads remaining!

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Sequential Laundry

° Whew, it’s 10 pm already and two loads to go

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Sequential Laundry

° We finish at 2 AM (half asleep)
° Sequential laundry takes 8 hours for 4 loads
°  If they pipelined it, how long would laundry take?

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Pipelined Laundry: Start work ASAP

° Let’s start to wash….

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

Pipelined Laundry: Start work ASAP

° Begin first load with washer

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

Pipelined Laundry: Start work ASAP

° Move first load to dryer
° Washer is empty, so we can start second load

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

Pipelined Laundry: Start work ASAP

° Fold first load, dry second load, start third load

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

Pipelined Laundry: Start work ASAP

° Stash first load, fold second, dry third, wash fourth

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

Pipelined Laundry: Start work ASAP

° Pipelined laundry takes 3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

Pipelining Lessons

°  Pipelining doesn’t help
latency of single task, it
helps throughput of entire
workload

°  Multiple tasks operating
simultaneously using
different resources

°  Potential speedup =
Number pipe stages

°  Pipeline rate limited by
slowest pipeline stage

°  Unbalanced lengths of
pipe stages reduces
speedup

°  Time to “fill” pipeline and
time to “drain” it reduces
speedup

°  Stall for Dependences

6 PM 7 8 9
Time

B
C
D

A
30 30 30 30 30 30 30

T
a
s
k

O
r
d
e
r

Pipelining for Instruction Execution

° Same concept applies for instructions!
° We can pipeline instruction execution
° For MIPS, there are five classic steps:

• FETCH: Fetch instruction from memory
• DECODE: Read registers while decoding instruction
• EXECUTE: Execute operation / calculate an address
• MEMORY: Access an operand in memory (L/S)
• WRITE BACK: Write result into the register file

Example - The Five Steps for a Load

° Fetch: Instruction Fetch
• Fetch the instruction from the Instruction

Memory
° Reg/Dec: Registers Fetch and Instruction Decode
° Exec: Calculate the memory address
° Mem: Read the data from the Data Memory
° Wr: Write the data back to the register file

Pipelining for Instruction Execution - Example

° Let’s consider a single-cycle vs. pipelined
implementation of simple MIPS

 Inst. Reg ALU Mem. Reg Total
Class Fetch Read Oper Acc. Write Time
Load 2 ns 1 ns 2 ns 2 ns 1 ns 8 ns
Store 2 ns 1 ns 2 ns 2 ns 7 ns
R-type 2 ns 1 ns 2 ns 1 ns 6 ns
Branch 2 ns 1 ns 2 ns 5 ns

°  For single cycle implementation, the cycle time is stretched to

accommodate the slowest instruction
°  Cycle time: 8 ns for single cycle implementation

Single Cycle Implementation

 Num. Instruction
 I1 lw $1,100($0)
 I2 lw $2, 200($0)
 I3 lw $3, 300($0)

I1

I2

I3

Time for each instruction is 8 ns - slowest time (for load)
Time between 1st and 4th instruction is 3 * 8 ns = 24 ns
Total time = 24 ns

Fetch Reg Reg ALU Memory

Fetch Reg Reg ALU Memory

F

2 4 6 8 10 12 14 16

Pipelined Implementation

 Num. Instruction
 I1 lw $1,100($0)
 I2 lw $2, 200($0)
 I3 lw $3, 300($0)

I1

I2

I3

Each step takes 2 ns (even reg file access) - slowest step is 2 ns
Time between 1st and 4th instruction: 3 * 2 ns = 6 ns
Total time for the three instructions = 14 ns

Fetch Reg Reg ALU Memory

2 4 6 8 10 12 14 16

Fetch Reg Reg ALU Memory

Fetch Reg Reg ALU Memory

Why Pipeline? Because the resources are there!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

How does Pipelining Help?
°  Improves instruction throughput
° Assuming perfectly balanced stages (all stages

take same amount of time):
Time betw. instructions pipeline =
 Time between instructions nonpipelined
 Number of pipeline stages
Example: 8 ns for nonpipelined machine
What’s the time for five stage pipelined machine?
 8 ns / 5 = 1.6 ns

Wait Just One Minute!!!
Under ideal conditions -
 Speedup from pipelining equals the number of

 pipeline stages
 speedup = time nonpipelined / time pipelined

 = 8 ns / 1.6 ns
 = 5

But, remember the maximum stage latency is 2 ns
Hence, the speedup in this case is really:
 speedup = time nonpipelined / time pipelined
 = 8 ns / 2 ns
 = 4

Wait Just One More Minute!!!
° Total time for the three loads was

• 14 ns on pipelined version
• 24 ns on nonpipelined version

How can you claim a 4 times speedup?
 (Speedup here is 24 ns / 14 ns = 1.7)

Consider 1003 instructions:
 Nonpipelined: 1000 * 8 ns + 24 ns = 8024 ns
 Pipelined: 1000 * 2 ns + 14 ns = 2014 ns
 8,024 ns / 2,014 ns = 3.98
 = approx 8 ns / 2 ns

The Value of Pipelining
Improves performance -
 By increasing instruction throughput
 As opposed to decreasing execution time!!!
Consider our example for 1003 instructions:
 Total program time is: 2,014 ns
 But each instruction takes
 # pipe stages * cycle time =
 = 5 * 2 ns
 = 10 ns

This is longer than 8 ns for the single cycle version!

Pipelining Complications
° Situations when next instruction can not execute in

the next cycle!
° Pipeline hazards - when an instruction is unable to

execute (or advance in the pipeline)
° Three types of hazards:
 Structural hazards
 Data hazards
 Control hazards

Structural Hazards
° Structural hazards: attempt to use the same

resource two different ways at the same time
° Laundry example:

• E.g., combined washer/dryer would be a
structural hazard or folder busy doing
something else (watching TV)

°  Instruction example:
• With a single memory

-  Can be fetching an instruction
-  At same time doing a load

• Only one read: a structural hazard

Structural Hazards (assuming a single memory)

Reg IM DM Reg

Reg IM DM Reg

Reg IM DM Reg

Reg IM DM Reg

Clock cycles CC1 CC2 CC3 CC4 CC5 CC6

Load

add

add

add

Reg IM DM Reg

Reg IM DM Reg

Reg IM DM Reg

Reg IM DM Reg

Clock cycles CC1 CC2 CC3 CC4 CC5 CC6

Load

add

add

add

Structural Hazards (assuming a single memory)

Dealing with Structural Hazards

° Arise from lack of resources
° We can eliminate the hazard by adding more

resources!
•  In the previous example, we add a second

memory (in effect, we will do this with cache -
later in the semester)

• Fetch and memory data read can happen at the
same time

° Another solution:
• Stall instruction until resource available

Data Hazards

° Data hazards: attempt to use item before it is ready
° Laundry example:

• E.g., one sock of pair in dryer and one in
washer; can’t fold until get sock from washer
through dryer

°  Instruction execution:
•  Instruction depends on result of prior

instruction still in the pipeline
 add $s0,$t0,$t1

 sub $t2,$s0,$t3
$s0 produced by first add but needed
by the second add

Data Hazards

° Are data hazards common?
 You bet!!!
° Programs represent data flow between instructions

and that data flow creates these dependences
° Hence, we must do something about data hazards!!
° One solution: Stall until value needed is written

back to the register file and we can read it
° Penalty is too high with this solution

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3

Effect of Stalling on Data Hazard

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3 F ID EX MEM WB

Effect of Stalling on Data Hazard

Stall Stall Stall

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3 F ID EX MEM WB

Improvement: Register Write in First Half of Cycle, Register Read in Second Half

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3

Effect of Stalling on Data Hazard

Stall Stall Stall

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3 F ID EX MEM WB

Improvement: Register Write in First Half of Cycle, Register Read in Second Half

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3 F ID EX MEM WB

Effect of Stalling on Data Hazard

Stall Stall

Stall Stall Stall

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3 F ID EX MEM WB

Improvement: Register Write in First Half of Cycle, Register Read in Second Half

 CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7
add $s0,$t0,$t1 F ID EX MEM WB
sub $t2,$s0,$t3 F ID EX MEM WB

Effect of Stalling on Data Hazard

Stall Stall

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Stall Stall

Stall

Stall

Stall Stall Stall

Stall Stall Stall

Time
2 4 6 8 10

In first half of CC4,
write to reg file, and
in second half of
CC4, read from reg
file.

Stall

12 14

A Better Solution: Forwarding

° Write/Read register file in different half of cycle
° Forwarding on ALU output

• Add path from ALU back to one of its inputs!

A Better Solution: Forwarding

° Write/Read register file in different half of cycle
° Forwarding on ALU output

• Add path from ALU back to one of its inputs!

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Time

The value needed by the
sub isn’t read from the reg
file - it comes directly from
the result output from doing
the add operation

add $s0,$t0,$t1

sub $t2,$s0,$t3

Def: Forwarding passes result from later stage to an earlier one

2 0 6 4 8 10

Forwarding Memory Result
° Just like we forward from ALU

• The result from a load may be needed by the
very next instruction

• Hence, we need a forwarding path

Forwarding Memory Result
° Just like we forward from ALU

• The result from a load may be needed by the
very next instruction

• Hence, we need a forwarding path

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Time
2

lw $s0,20($t1)

sub $t2,$s0,$t3

Stall Stall Stall Stall Stall

Have to stall one cycle - the
loaded value isn’t available
until DM

0 6 4 8 10 12

Control Hazards
° Control hazards: attempt to make a decision before

condition is evaulated
° Laundry example:

• E.g., washing football uniforms and need to get
proper detergent level; need to see after dryer
before next load in

°  Instruction execution:
• Branch instructions
 beq $1,$2,L0

 add $4,$5,$6

 ...

 L0: sub $7,$8,$9

Which instruction do we
fetch next into the pipe
following the branch??

Dealing with Control Hazards

° We can stall until branch outcome is known
• Once branch is known, then fetch
• But this is wasteful

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

add $4,$5,$6

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

beq $1,$2,40

lw $3,300($0)

2 4 6 8 10 12 14
Time (ns)

2ns

4ns

2ns

Dealing with Control Hazards - Predict Branch

° Predict that the branch is not taken
• Attempt to get next instruction from the fall thru

of the branch (i.e., next sequential address)
° We are gambling that the branch isn’t ever going to

be taken
° When we’re right - there is no stall
° But what happens when we’re wrong????

Predicting Branch as Not Taken

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

add $4,$5,$6

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

beq $1,$2,40

lw $3,300($0)

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

add $4,$5,$6

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

Instruction
Fetch

Reg
Read ALU Data

Access
Reg
Write

beq $1,$2,40

or $7,$8,$9

STALL STALL STALL STALL

Time

Branch not taken,
continue as normal

Branch taken, stall to
“fix” the prediction

2 4 6 8 10 12 14

Time 2 4 6 8 10 12 14

The three implementations

CPU time = IC × CPI × CC

For same instruction set (IC same):

 Single cycle: CPI = 1, long CC
 Multi cycle: CPI>1, probably 3-4, short CC
 Pipelined: CPI>1, probably 1.2-1.4, short CC

Let’s compare

° Suppose 5-step MIPS implementation
• Single cycle: 10 ns
• Multi-cycle: 3.9 CPI, 2 ns
• Pipelined: 1.2 CPI, 2ns

° What is the speedup of
• Multi-cycle vs. single cycle
• Pipelined vs. multi-cycle
• Pipelined vs. single cycle

Multi-cycle vs single cycle

° CPU time single = IC × 1 × 10ns = IC × 10 ns
° CPU time multi = IC × 3.9 × 2ns = IC × 7.8 ns

° Speedup of multi vs. single cycle
 Speedup = IC × 10 ns / IC × 7.8 ns =
 = 10 ns / 7.8 ns
 = 1.28x

Pipelined vs. multi cycle

° CPU time multi-cycle = IC × 3.9 × 2ns = IC × 7.8ns
° CPU time pipeline = IC × 1.2 × 2ns = IC × 2.4ns

° Speedup of pipelined vs. multi-cycle
Speedup = IC × 7.8ns / IC × 2.4ns = 3.25x

°  Speedup of pipelined vs. single cycle
Speedup = IC × 10ns / IC × 2.4ns = 4.17x

The End

Thank you!

