Single cycle: All “steps” of executing an instruction are done
in 1 clock cycle. The cycle is long to accommodate longest path.

Md ﬁ
4 {
/ |
|
Instruction [31-26] ‘
\
\
Instruction [25-21) Read
Read register 1
PC -4 gdress y
Instruction [20-16] Read
. register 2
s .[.;1 K:J'I‘ —d Registers Reagd
e hddress
Instruction regster
memory Instruction [15-11) Write
.) cata
Instruction [15-0] 1

Instruction [5-0]

Single cycle: LW is the longest instruction (worst case)

Instruction [25-21)
PC foad
\ Instruction [20-16]

.......

Irstruction
memory

instruction [15-11]

Instruction [15-0)

Instruction [5-0]

Multi cycle: Execute instruction in steps; one step done per
clock cycle. The longest step determines cycle time.

Md ﬁ
4 / !
| !
instruction [31-26] | !
‘ |
‘ T rE———
\ /
\ /
Instruction [25-21) Read
Road egister 1
PC -4 gdress o st
instruction [20-16] Resd dta
) register 2
Imuln;llx:]c; - Registers Qaag
Write data 2
Instruction regster
ety instruction [15-11] Write
| —{ L

instruction [15-0] h

nstruction [5-0]

Mddress

Write

data

Read
data

Data
memory

Multi cycle: 5 steps (cycles) to execute instruction

Fetch

Decode/Reg Rd

Execute

Md
4
Read

=] address
Instruction|__|
[31-0f

Instruction
memory

Instruction [5-0]

o
M
u
x
1
\“ “\
f
f !
Jstruction [31-26) {
I
f
| /
\ }
\ /
,7A"ﬁ
fnstruction [25-21] Read
register 1 Raad
Jnstruction [20-16] Read data 1
register 2
Registers Qead
Wite data 2 Addross Read Lo
register dta
jnstruction [16-11] Write [
| ot Data x|
e memory 0
data
fnstruction [15-0] 5 [sign :
extend

—

Writeback

Pipelining

° How do we improve on the performance of the multi

cycle implementation?

° Key observation -

* we can be doing multiple things at once

° Pipelining -

« implementation technique to execute multiple

instructions simultaneously

Pipelining is Natural!

° Laundry Example

° Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

° Washer takes 30 minutes

° Dryer takes 30 minutes

o &

Folder” takes 30 minutes

o 6

Stasher” takes 30 minutes
to put clothes into drawers

X0 0 -

= O Q=0

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM
|
%'ﬁ'sol30'%'%'30'30'%'%'30'30'%'%'30'30'

Time

CtCt Ct &

° We have four loads of laundry to do (A,B,C,D)

X 0n 0 -

=0 Q=0

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM

I
3030130 30'%'?' 30'30'30'30'30/30 3030130/ 30
5 ' ime

O
O

° First, we wash....

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM
I

T 3030 30'30'%'?'30'30'%'%'30'30'%'%'30'30'

— ime

1535

k| D

05

NS

d

e

I °Then we dry....
Sequential Laundry
6PM 7 8 9 10 11 12 1 2AM
I

T 3030 30'30'%'?30'30'%'%'30'30'%'%'30'30'

=~ . ime

1585

k| D

05

D

d

e

I °Now we fold....

X0 0 -

Sequential Laundry

= O Q=0

6PM 7 8 9 10 1" 12 1 2AM
I

'30'30 30I 30'%'%' 30I 30'%'%' 30I 30'%'%' 30I 30I

6. K Time
S

O
O

° Finally we put the clothes away....
° It took us two hours to do one laundry...yikes!

° We have three loads remaining!

X 0n 0 -

=0 Q=0

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM
I
130'30 30'30'%'37)'30'30'%'%'30'30'%'%'30'30'

5. A Time
S

5
O
O

° Whew, it’s 10 pm already and two loads to go

X0 0 -

= O Q=0

Sequential Laundry

6PM 7 8 9 10 1" 12 1 2AM
I

'30'30 30I 30'%'%' 30I 30'%'%' 30I 30'%'%' 30I 30I

g.j& m.ej§
S .
g A"}'&

° We finish at 2 AM (half asleep)
° Sequential laundry takes 8 hours for 4 loads
° If they pipelined it, how long would laundry take?

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12 1 2AM

I ——

[|
3030 30 30 30 30 30

Time

x 0 O -

et &

SO Q-0

° Let’ s start to wash....

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12 1 2AM

L ——

l
3030 30 30 30 30 30
S
B}
S
O

Time

X< 0n 0 -

SO Q-0

° Begin first load with washer

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12 1 2AM

I ——

3030303030 3030
-5
B
C)

O

Time

x 0 O -

S0 Q=0

° Move first load to dryer
° Washer is empty, so we can start second load

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12 1 2AM

L ——

| .
T 303030 303030 30 Time
a|éd '
S Yo
k| O)
|8 B
0| 5
d
e
r

° Fold first load, dry second load, start third load

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12 1 2AM

== 1
T 3030 30 30 30 30 30 Time
| B @) A
S = °
K | D = 17
. CI =
YD)
d
e
r

° Stash first load, fold second, dry third, wash fourth

Pipelined Laundry: Start work ASAP

X< 0n 0 -

SO Q-0

6PM 7 8 9 10 11 12 1 2AM

L ——

[] ,
3030 30 30 30 30 30 Time

S

Ct 1€t

° Pipelined laundry takes 3.5 hours for 4 loads!

Pipelining Lessons

x 0 O -

° Pipelining doesn’ t help

PM latency of single task, it
6 | 7 8 9 helpksI haoughput of entire
" workloa
L Time

° Multir)le tasks operating
simultaneously using
different resources

° Potential speedup =
Number pipe stages

° Pipeline rate limited by
slowest pipeline stage

S~ QS0

° Unbalanced lengths of
pipe stages reduces
speedup

° Time to “fill” pipeline and
time to “drain” it reduces
speedup

° Stall for Dependences

Pipelining for Instruction Execution

° Same concept applies for instructions!
° We can pipeline instruction execution

° For MIPS, there are five classic steps:
* FETCH: Fetch instruction from memory
- DECODE: Read registers while decoding instruction
*« EXECUTE: Execute operation / calculate an address
* MEMORY: Access an operand in memory (L/S)
* WRITE BACK: Write result into the register file

Example - The Five Steps for a Load

° Fetch: Instruction Fetch

* Fetch the instruction from the Instruction
Memory

° Reg/Dec: Registers Fetch and Instruction Decode
° Exec: Calculate the memory address

° Mem: Read the data from the Data Memory

° Wr: Write the data back to the register file

Pipelining for Instruction Execution - Example

° Let’ s consider a single-cycle vs. pipelined
implementation of simple MIPS

Instt. Reg ALU Mem. Reg Total
Class Fetch Read Oper Acc. Write Time
Load 2ns 1ns 2ns 2ns 1ns 8 ns
Store 2ns 1ns 2ns 2ns 7ns
R-type 2ns 1ns 2ns 1ns 6 ns
Branch 2ns 1ns 2ns 5ns

° For single cycle implementation, the cycle time is stretched to
accommodate the slowest instruction

¢ Cycle time: 8 ns for single cycle implementation

Single Cycle Implementation

Num. Instruction

" Iw $1,100($0)
12 Iw $2, 200($0)
13 Iw $3, 300($0)

2 4 6 8 10 12 14 16

|1| Fetch |Reg| ALU |Memory|Reg|

12 | Fetch |Reg| ALU |Memory|Reg|

. [F]

Time for each instruction is 8 ns - slowest time (for load)

Time between 1st and 4th instruction is 3 * 8 ns =24 ns

Total time = 24 ns

Pipelined Implementation

Num. Instruction

" Iw $1,100($0)
12 Iw $2, 200($0)
13 Iw $3, 300($0)

2 4 6 8 10 12 14 16
| | | | | | | | |
I | | | | I | I [

|1| Fetch | |Reg| ALU |Memory|Reg| |
12 | Feteh [[Reg] ALU [Memory [Reg| |
13 | Feteh [[Reg] ALU [Memory [Reg| |

Each step takes 2 ns (even reg file access) - slowest step is 2 ns
Time between 1st and 4th instruction: 3*2 ns =6 ns

Total time for the three instructions =14 ns

Why Pipeline? Because the resources are there!

Time (clock cycles)

/ Im Reg I ? [Dm Ir._ Reg
n |Inst0 (A :
s [
t |nst 1 Im [H]Reg .|.Dm Reg
" [
o [Inst 2 i el S
r s
Z Inst 3 Im K Reg: ?, Dm |F-Reg
r] ;
InSt 4 Im .IReg ? Dm Reg
=1

How does Pipelining Help?

° Improves instruction throughput

° Assuming perfectly balanced stages (all stages
take same amount of time):

Time betw. instructions pipeline =

Time between instructions nonpipelined

Number of pipeline stages
Example: 8 ns for nonpipelined machine
What’s the time for five stage pipelined machine?
8ns/5=1.6ns

Wait Just One Minute!!!

Under ideal conditions -

Speedup from pipelining equals the number of
pipeline stages

speedup = time nonpipelined / time pipelined
=8ns/1.6 ns
=5
But, remember the maximum stage latency is 2 ns
Hence, the speedup in this case is really:
speedup = time nonpipelined / time pipelined
=8ns/2ns
=4

Wait Just One More Minute!!!

° Total time for the three loads was
* 14 ns on pipelined version
* 24 ns on nonpipelined version

How can you claim a 4 times speedup?
(Speedup here is 24 ns / 14 ns = 1.7)

Consider 1003 instructions:
Nonpipelined: 1000 * 8 ns + 24 ns = 8024 ns
Pipelined: 1000 *2 ns + 14 ns = 2014 ns
8,024 ns /2,014 ns = 3.98
=approx8ns/2ns

The Value of Pipelining

Improves performance -
By increasing instruction throughput
As opposed to decreasing execution time!!!
Consider our example for 1003 instructions:
Total program time is: 2,014 ns
But each instruction takes
pipe stages * cycle time =
=5*2ns
=10 ns

This is longer than 8 ns for the single cycle version!

Pipelining Complications

° Situations when next instruction can not execute in
the next cycle!

° Pipeline hazards - when an instruction is unable to
execute (or advance in the pipeline)

° Three types of hazards:
Structural hazards
Data hazards

Control hazards

Structural Hazards

¢ Structural hazards: attempt to use the same
resource two different ways at the same time

° Laundry example:

* E.g., combined washer/dryer would be a
structural hazard or folder busy doing
something else (watching TV)

° Instruction example:
* With a single memory
- Can be fetching an instruction
- At same time doing a load
* Only one read: a structural hazard

Structural Hazards (assuming a single memory)

(@]
N D
9 2
Q o
T [[Y Y N | > JEU PR S,
3 K 3 o
[$]
Q > =
S| b HE * L
g Z O O T
o m O =
o [0)
............................... e : ik
> sl — | | el T
m % Di m. = 2
«© (@)}
.................... A ===) A S| 3 g 5 * %
)
2 g wi 53 @| R T
x 14 o) 7o) o =
°l = ﬁ .. c 9 ¥ o =
=S N S N === S N S
3 | 38 & = 3 ke
O x = (7)) <t s [))
g| § L3 :
'
3 2 = 3 (R R I i
o o = .m [©] % s
© O 2 =
.. N
N
O oy I o
o s — O 2
© 2 - © o & =
||| LS.
.w ...
) o b
o | =2 2| 8| | =
= =
° (2]
< ke ke o kS ke o o
3 E i E: 5 ® E ®

Dealing with Structural Hazards

° Arise from lack of resources

° We can eliminate the hazard by adding more
resources!

* In the previous example, we add a second
memory (in effect, we will do this with cache -
later in the semester)

* Fetch and memory data read can happen at the
same time

° Another solution:
« Stall instruction until resource available

Data Hazards

° Data hazards: attempt to use item before it is ready

° Laundry example:

* E.g., one sock of pair in dryer and one in
washer; can’ t fold until get sock from washer
through dryer

° Instruction execution:

* Instruction depends on result of prior
instruction still in the pipeline

add $sO ’ $to0 ’ Stl $s0 produced by first add but needed
sub $t2,$s0,5t3 by the second add

Data Hazards

° Are data hazards common?
You bet!!!

° Programs represent data flow between instructions
and that data flow creates these dependences

° Hence, we must do something about data hazards!!

° One solution: Stall until value needed is written
back to the register file and we can read it

° Penalty is too high with this solution

Effect of Stalling on Data Hazard

CCO0 CC1 CC2 CC3 cc4 CC5 CCé6 CC7 CcCs8
add $s0,$t0,5t1 F ID EX MEM WB
sub $t2,$s0,$t3

Effect of Stalling on Data Hazard
cco cc1 cc2 cc3 cc4 Cé CC7 ccCs

add $s0,$t0,$t1 F ID ME
sub $t2,$s0,$t3 MEM WB

Effect of Stalling on Data Hazard
CCO CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

add $s0,$t0.5t1 F 1D _EX MEM WB
sub $t2,$s0,$t3 1\‘;‘@‘ %{gﬁ{ ID EX MEM WB

Improvement: Register Write in First Half of Cycle, Register Read in Second Half
CC0 CC1 ccz2cc3 CcC4 CC5 CCé6 CC7

add $s0,$t0,$t1 F ID EX MEM WB

sub $t2,$s0,$t3

Effect of Stalling on Data Hazard
cco cc1 cc2 cc3 cc4 Cé CC7 ccCs

add $s0,$t0,$t1 F ID ME WB
sub $t2,$s0,$t3 FS3 { X {‘ L MEM WB

Improvement: Register Write in First Half of Cycle, Register Read in Second Half
CC0 CC1 ccz2ccs3 CC4 CC5 CCé6 CC7

add $s0,$t0,$t1 F ID WB
sub $t2,$s0,$t3 F ID EX MEM WB

Effect of Stalling on Data Hazard
cco cc1 ccz CC3 cc4 Cé cc7 ccs

add $s0,$t0,$t1 F |D ME WB
sub $t2,$30,$t3 { SS {‘ g MEM WB

Improvement: Register erte in F|rst Half of Cvcle Register Read in Second Half
CC0 CC1 cc2ccs3 CC4 CC5 CCé6 CC7

add $s0,$t0,$t1 F D : WB
sub $t2,$s0,$t3 F 1‘.;%(: 1‘.;‘6{: ID EX MEM WB

10 12 14

Time

Im

In first half of CC4,
write to reg file, and
in second half of
CC4, read from reg
file.

| ?, [Dm LH Reg
[

A Better Solution: Forwarding

° Write/Read register file in different half of cycle

° Forwarding on ALU output
* Add path from ALU back to one of its inputs!

A Better Solution: Forwarding

° Write/Read register file in different half of cycle
° Forwarding on ALU output
* Add path from ALU back to one of its inputs!

Def: Forwarding passes result from later stage to an earlier one
| | | | |

0 12 14 16 18 110
: ; ; ; ; Time

Z :Dm ?_Reg

The value needed by the
sub isn’t read from the reg
file - it comes directly from
Reg| the result output from doing
the add operation

sub $t2,$s0,$t3 Reg|. Dm

T
add $s0,$t0,5t1 [Im l[Reg
1
1
1
1
1

)
e
7

Forwarding Memory Result

° Just like we forward from ALU

* The result from a load may be needed by the
very next instruction

* Hence, we need a forwarding path

Forwarding Memory Result

° Just like we forward from ALU

* The result from a load may be needed by the
very next instruction

* Hence, we need a forwarding path

0 ,2 1 4 16,8 y 10 12
| ; ; ; Time
Iw $s0,20($t1) Im KL Reg : i ; Have to stall one cycle - the
- . - loaded value isn’t available
N ! ! until DM
| | | | | |
| | |
| | | | | |
. . A . .
1 1 1 N ! 1
sub $t2,$s0,$t3 i ([1m {0 Reg [= Lyiom fr{Reg
1 | |

Control Hazards

¢ Control hazards: attempt to make a decision before
condition is evaulated

° Laundry example:

* E.g., washing football uniforms and need to get
proper detergent level; need to see after dryer
before next load in

° Instruction execution:
* Branch instructions

beq $1,52,L0 Which instruction do we
add $4,$5,%6 fetch next into the pipe

following the branch??

LO: sub $7,$8,%9

Dealing with Control Hazards

° We can stall until branch outcome is known
* Once branch is known, then fetch
* But this is wasteful

Time (ns)
2 4 6 8 10 12 14
| | | | | | | | >
T T T T T T T T L
add $4,$5,$6 |Instruction Reg ALU Data Reg
Fetch Read Access |Write
beq $1,$2,40 «——— | Instruction Reg ALU Data Reg
2ns Fetch Read| Access |Write|
Iw $3,300($0) < Instruction Reg ALU Data Reg
T 4ns Fetch Read Access |Write|

—
2ns

Dealing with Control Hazards - Predict Branch

° Predict that the branch is not taken

» Attempt to get next instruction from the fall thru
of the branch (i.e., next sequential address)

° We are gambling that the branch isn’ t ever going to

be taken

° When we’ re right - there is no stall

° But what happens when we’ re wrong????

Predicting Branch as Not Taken

Time 2 4 6 8 10 12 14
| | | | | | | | >
T T T T T T T T L
add $4,$5,$6 |Instruction Reg Data Reg Branch not taken
Fetch Read ALU Access |Write -
- continue as normal
beq $1,$2,40 Instruction Reg ALU Data Reg
Fetch Read Access |Write
Iw $3,300($0) Instruction Reg ALU Data Reg
Fetch Read Access |Write
Time 2 4 6 8 10 12 14
| | | | | | | | >
T T T T T T T T L
add $4,$5,$6 | Instruction Reg Data Reg
Fetch Read ALY Access [Write %gjaig;aﬁggléfgx fo
beq $1,$2,40 Instruction Reg ALU Data Reg p
Fetch Read Access [Write
STALL STALL STALL STALL
Instruction Reg Data Reg
or $7,$8,$9 Fetch Read| AtY Access |Write

The three implementations

CPU time =I1C x CPI x CC

For same instruction set (IC same):
Single cycle: CP1 =1, long CC
Multi cycle: CPI>1, probably 3-4, short CC
Pipelined: CPI>1, probably 1.2-1.4, short CC

Let’s compare

° Suppose 5-step MIPS implementation
« Single cycle: 10 ns
* Multi-cycle: 3.9 CPI, 2 ns
* Pipelined: 1.2 CPI, 2ns

° What is the speedup of
* Multi-cycle vs. single cycle
* Pipelined vs. multi-cycle
* Pipelined vs. single cycle

Multi-cycle vs single cycle

° CPU time single =IC x 1 x 10ns =IC x 10 ns
°CPU time multi=IC x3.9x2ns=1IC x 7.8 ns

° Speedup of multi vs. single cycle
Speedup=ICx10ns/IC x 7.8 ns =
=10ns /7.8 ns
=1.28x

Pipelined vs. multi cycle

° CPU time multi-cycle =IC x 3.9 x 2ns = IC x 7.8ns
° CPU time pipeline =1C x 1.2 x 2ns = IC x 2.4ns

° Speedup of pipelined vs. multi-cycle
Speedup =IC x 7.8ns / IC x 2.4ns = 3.25x

° Speedup of pipelined vs. single cycle
Speedup =IC x 10ns / IC x 2.4ns = 4.17x

The End

Thank you!

