
76

Single vs. Multi-cycle Implementation

• Multicycle: Instructions take several faster cycles
• For this simple version, the multi-cycle

implementation could be as much as 1.27 times
faster (for a typical instruction mix)

• Suppose we had floating point operations
– Floating point has very high latency
– E.g., floating-point multiply may be 16 ns vs

integer add may be 2 ns
– So, clock cycle constrained by 16 ns of FP

• Suppose a program doesn’t do ANY floating point?
– Performance penalty is too big to tolerate

77

Multi-cycle Implementation

• Single memory unit (I and D), single ALU
• Several temporary registers (IR, MDR, A, B, ALUOut)
• Temporaries hold output value of element so the

output value can be used on subsequent cycle
• Values needed by subsequent instruction stored in

programmer visible state (memory, RF)

78

A single ALU

• Single ALU must accomodate all inputs that used to
go to three different ALUs in the single cycle
implementation

1. Multiplexor on first input to ALU to select A register
(from RF) or the PC

2. Multiplexor on second input to ALU to select from the
constant 4 (PC increment), sign-extended value,
shifted offset field, and RF input

• Trade-off: Additional multiplexors (and time) but only
a single ALU since it can be shared across cycles

79

Multi-cycle Datapath with Control

• Datapath with additional muxes, temporary registers,
and new control signals

• Most temporaries (except IR) are updated on every
cycle, so no write control is required (always write)

80

Multi-cycle Steps - Instruction Fetch

• Instruction fetch
IR = Memory[PC];
PC = PC + 4;

• Operation
– Send PC to memory as the address
– Read instruction from memory
– Write instruction into IR for use on next cycle
– Increment PC by 4

• Uses ALU in this first cycle
• Set control signals to send PC and constant 4 to ALU

81

Multi-cycle Steps - Instruction Decode

• Don’t yet know what instruction is
– Decode the instruction concurrently with RF read
– Optimistically read registers
– Optimistically compute branch target
– We’ll select the right answer on next cycle

• Decode and Register File Read
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

82

Multi-cycle Steps - Execution

• Operation varies based on instruction decode

• Memory reference:
ALUOut = A + sign-extend(IR[15-0]);

• Arithmetic-logical instruction:
ALUOut = A op B;

• Branch:
if (A == B) PC = ALUOut;

• Jump:
PC = PC[31-28] || (IR[25-0] << 2)

83

Multi-cycle Steps - Memory / Completion

• Load/store accesses memory or arithmetic writes
result to the register file

• Memory reference:
MDR = Memory[ALUOut]; (load)
or
Memory[ALUOut] = B; (store)

• Arithmetic-logical instruction:
Reg[IR[15-11]] = ALUOut;

84

Multi-cycle Steps - Read completion

• Finish a memory read by writing read value into the
register file

• Load operation:
Reg[IR[20-16]] = MDR;

85

Multi-cycle Steps

• Instructions always do the first two steps

• Branch can finish in the third step
• Arithmetic-logical can finish in the fourth step
• Stores can finish in the fourth step
• Loads finish in the fifth step

Instruction Number of cycles
Branch / Jump 3
Arithmetic-logical 4
Stores 4
Loads 5

86

Multi-cycle vs. Single cycle?

• Why does it help?
• Let’s consider a simple example.... in class example

87

Example

.data
A: .word 10,20,30,40,50,60,70,80,90,100
B: .word 0,0,0,0,0,0,0,0,0,0

.text
la $s0,A # address of A
li $s1,10 # A[i] * 10
li $s2,10 # iteration

loop: lw $t0,0($s0) # read A[i]
mul $t0,$t0,$s1 # $t0=A[i]*10
sw $t0,40($s0) # write new A[i]
addi $s0,$s0,4 # next elemen t
addi $s2,$s2,-1 # dec iteration
bne $s2,$0,loop # done?
li $v0,10 # exit sys call
sysall # syscall

88

Example

• How much time does it take to execute this program
on the single cycle and multi cycle implementation?

• Assume:
– Single cycle clock rate is 100 MHz

89

Example

.data
A: .word 10,20,30,40,50,60,70,80,90,100
B: .word 0,0,0,0,0,0,0,0,0,0

.text # instr. count
la $s0,A # address of A 2
li $s1,10 # A[i] * 10 1
li $s2,10 # iteration 1

loop: lw $t0,0($s0) # read A[i] 10
mul $t0,$t0,$s1 # $t0=A[i]*10 10
sw $t0,40($s0) # write new A[i] 10
addi $s0,$s0,4 # next elemen t 10
addi $s2,$s2,-1 # dec iteration 10
bne $s2,$0,loop # done? 10
li $v0,10 # exit sys call 1
sysall # syscall 1

90

Example

• How much time on SINGLE cycle?

• Every instruction type takes 1 clock cycle
• Each clock cycle is 100 MHz
• Clock cycle length is 1 / 100 MHz = 10ns

• Sum up the total number of instructions: 66
• Thus,

66 instruction * 1 cycle each * 10ns per cycle = 660ns

91

Example

• How much time on multi cycle?

• To answer this, we need to know (1) the clock cycle
length for the multi-cycle implementation, and (2)
how many instructions of each type are executed

(1) Suppose ideal circumstance: We divide the single
cycle into 5 shorter (faster) cycles:

– Multi-cycle clock cycle = 10 ns / 5 cycle= 2 ns

92

Example

• (2) How many instructions of each type?
• Easy: Just look at the program and count them

• Arithmetic 36
• Loads 10
• Branches 10
• Stores 10

• Now, we need to compute how much time. The time
is simply the sum of the number of each type
multiplied by the number of cycles for the type,
multiplied by the clock cycle time.

93

Example

• So, in this case, we have:

36 arithmetic * 4 cycles * 2 ns +
10 loads * 5 cycles * 2 ns +
10 branches * 3 cycles * 2 ns +
10 stores * 4 cycles * 2 ns
= 288 ns + 100 ns + 60 ns + 80 ns
= 528 ns

• Thus, multi-cycle implementation is 528 ns and the
single cycle is 660 ns.

94

Example

• How much faster is the multi-cycle implementation?

• Ratio of time for single cycle to multi cycle

• Thus, we have:
660 ns / 528 ns = 1.25 times faster

96

Multi-cycle Instruction Exeution

Branch
Cycle0: IR=Memory[PC];

PC=PC+4;
Cycle1: ALUout=PC+(sign-extend(IR[15-0])<<2);
Cycle2: if A=B PC=ALUout;

Arithmetic
Cycle0: IR=Memory[PC];

PC=PC+4;
Cycle1: A=Reg[IR[25-21]]; B=Reg[IR[20-16]];
Cycle2: ALUout = A op B;
Cycle3: Reg[IR[15-11]]=ALUout;

97

Multi-cycle Instruction Exeution

Load
Cycle0: IR=Memory[PC];

PC=PC+4;
Cycle1: A=Reg[IR[25-21]];
Cycle2: ALUout = A + sign-extend(IR[15-0]);
Cycle3: MDR=Memory[ALUout];
Cycle4: Reg[IR[20-16]]=MDR;

98

Multi-cycle Control

• What are the control signals in each state for instrs:
– Arithmetic
– Load
– Store
– Branch

99

Multi-cycle Datapath with Control

100

Multi-cycle Control

• How are control signals generated on each cycle?
• What are the transitions between cycles? (i.e., what

happens next?)

• Control signals
– IorD, MemRead, MemWrite, IRWrite, RegDst
– MemtoReg, RegWrite, ALUSrcA
– ALUSrcB, ALUOp
– PCWrite

• Transitions from Decode based on Opcode
• Transitions from Eff. Addr. happen on load/store

101

Multi-cycle Control

ju
m

p

lo
ad

Finite State Machine

each cycle: advance one state
in a state: set datapath control
make decision based on opcode
control is different after Decode

106

Control for addition (arithmetic)

STATE (CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) EXE ALU(3) WB ALU(4) STATE 5
IorD 0 X X X
MemRead 1 0 0 0
MemWrite 0 0 0 0
IRWrite 1 0 0 0
RegDst X X X 1
MemToReg X X X 0
RegWrite 0 0 0 1
ALUSrcA 0 0 1 X
ALUSrcB 01 11 00 X
ALUOp 00 00 10 X
PCWrite 1 0 0 0

107

Control for memory (load)

STATE(CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) EFF AD(3) MEM RD(4) WB MEM(5)
IorD 0 X X 1 X
MemRead 1 0 0 1 0
MemWrite 0 0 0 0 0
IRWrite 1 0 0 0 0
RegDst X X X X 0
MemToReg X X X X 1
RegWrite 0 0 0 0 1
ALUSrcA 0 0 1 X X
ALUSrcB 01 11 10 X X
ALUOp 00 00 10 X X
PCWrite 1 0 0 0 0

108

Control for memory (store)

STATE(CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) EFF AD(3) MEM WR(4)
IorD 0 X X 1
MemRead 1 0 0 0
MemWrite 0 0 0 1
IRWrite 1 0 0 0
RegDst X X X X
MemToReg X X X X
RegWrite 0 0 0 0
ALUSrcA 0 0 1 X
ALUSrcB 01 11 10 X
ALUOp 00 00 10 X
PCWrite 1 0 0 0

109

Control for branch

STATE (CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) COMPARE STATE 4 STATE 5
IorD 0 X x
MemRead 1 0 0
MemWrite 0 0 0
IRWrite 1 0 0
RegDst X X X
MemToReg X X X
RegWrite 0 0 0
ALUSrcA 0 0 1
ALUSrcB 1 11 (3) 00 (0)
ALUOp 00 00 (Add) 01 (Sub)
PCWrite 1 0 0

110

Finite state machine (FSM)

Need a way to specify control per cycle
FSM: Tracks “step of execution” to generate control signals
Implementation: Generally, “hardwired” or “microcode”

111

Traffic light control example

• Two states
– NSgreen: green light on North-South road
– EWgreen: green light on East-West road

• Sensors (inputs) in each lane to detect car
– NScar: a car in either the north or south bound lanes
– EWcar: a car in either the east or west bound lanes

• Control signals (outputs) to each light
– NSlite: 0 is red, 1 is green
– EWlite: 0 is red, 1 is green

• Current state goes for 30 seconds, then
– Switch to the other state if there is a car waiting
– Current state goes for another 30 seconds if not

• We use 1/30 Hz clock (Hz is clock cycles per second)
– I.e., determine a new state (possibly current one) every thirty seconds

112

Traffic light control example

113

Traffic light control example

114

Traffic light control example

115

Traffic light control example

• Let’s assign “0” to NSlite and “1” to EWlite initially

• NextState = CurrentState’×EWcar +
CurrentState×NScar’

• NSlite = CurrentState’
• EWlite = CurrentState

• see carfsm.circ on 447 web site

