
12/28/15	

1	

CS/COE0447: Computer Organization and
Assembly Language

Bruce Childers

MW 3:00-4:15
MW 4:30-5:45

Spring 2016

Dept. of Computer Science
University of Pittsburgh

Course Details
Web site: http://www.cs.pitt.edu/~childers/CS0447

Book: Computer Org. and Design by Patterson and Hennessy, 5th Ed., M.K.
Software: MARS (MIPS simulator) and Logisim (Logic simulator) FREE!

A tale of three topics (1/3 semester each): MIPS, logic, processor design

Recitation: Required. Best 10 count toward grade. Weekly 5 minute quiz.

 ** Attend only your registered recitation!! **
Projects: One significant MIPS, one significant logic ** New & improved! **
Exams: 2 midterms, 1 final exam (date is fixed – see web site)
Grading: Exams 15%, 15%, 20%; Projects 15%, 15%; Lab 20%, Lab quiz 0%

Late assignments: 20% penalty each day late w/o pre-approved excuse
Make-up exams: Must make prior arrangements! BEFORE the exam.
Regrading: Sure! Quibbling over a few points isn’t worth it. Write up explanation.

** Look here! Syllabus & News! **

12/28/15	

2	

Computer systems
Three general classes of “computer”

“Desktop computers”

–  Examples include PC, Mac, Chrome, Linux…
–  Notebooks, netbooks, tablets (smart phones), …
–  Interact with a user – applications
–  Handful of central processing units (4-12?), gigabytes (109 bytes) memory,

few terabytes (1012 bytes) of disk
–  35 gigaflops (35×109 “floating-point math calculations” per second for Intel

Ivy Bridge)

NOT a trash can!

Trash can

Computer systems
Three general classes of “computer”

“Desktop computers”
“Servers”

–  Web servers, Computational servers, Supercomputers
–  Interact with other computers to “solve a problem” or “provide services”
–  Dozens to thousands of CPUs (Tianhe-2: 3,120,000 CPUs, 33.9 petaflops,

or 33.9×1015 calculations per second vs. 35×109 per second for PC)
–  Gigabytes to terabytes memory (Sequoia: 1,024,000GB [1.0 petabyte!])
–  Petabytes (1015 bytes) of storage
–  Connected (network) to work together
–  Power hungry but efficient (Tianhe-2: 17.8 MW vs. Three Mile Island ~800

MW output. Data centers: 1.7% to 2.2% of total electricity in US.)

12/28/15	

3	

Computer systems
Three general classes of “computer”

“Desktop computers”
“Servers”
“Embedded computers”

–  Hidden inside something not computer
–  Applications that run on these computers interact with the “real world”
–  Multiple different processors for different functions
–  Kilobytes (103 bytes) to gigabytes of memory
–  Kilobytes to gigabytes of storage
–  Slow speed to fast speed
–  Widest range of design!

Embedded Processing Market (2010)

$14B Microcontroller
$4B DSP

vo
tin

g
m

ac
hi

ne

Computer systems: Commonality
Programmable: Software programs “run” on the hardware

Components
•  Central processing unit (CPU): Does the computation

•  A.k.a., “the processor”, “the core”
•  Main memory: Temporarily holds results (volatile)
•  Storage: Long term storage (permanence) for large quantities
•  Input/Output: Interaction (human, physical world or machine)

Metrics
•  Speed: How fast computation is done. Faster is not always necessarily better.

Usually some constraint/goal on speed.
•  Energy/Power: A BIG concern today! Battery. Electricity cost and delivery to

data center.

12/28/15	

4	

Layers or views

antique!

App 1 App 2 App 3 App 4

System Software
(Compiler, Assembler, Linker)

Operating System

Instruction Set Architecture (ISA)

Processor Implementation C
S

04
47

Our view of a computer system in this course
is centered around the interface between the
lowest level in software and the hardware

Where do we start????
There’s a lot to cover in CS 447...

–  Software-hardware interface: “Instruction set architecture”
–  MIPS assembly language programming and concepts
–  Number representation and binary arithmetic
–  Logic design (AND, OR, NOT)
–  The building blocks of computation in the CPU
–  Building your very own CPU

Binary numbers are fundamental!
–  Everything is really just an operation on binary numbers
–  The CPU “understands” only binary numbers
–  So, we need to first understand some basics
–  Gives the entire class a common basis for discussion

12/28/15	

5	

Numbers

0 0 0 0

9 9 9 9

You encounter a form (taxes, graduation,
etc.) and you see a field labeled year like so:

What is the smallest year you could put in
the box?

What is the largest year you could put in
the box?

0 1 2 3 4 5 6 7 8 9

Why?

Well we simply can pick all of the smallest
digits and all of the largest digits:

10 digits

Range
How many total values can we put in the box?

 Range = High - Low +1
 Range = 9999 - 0000 + 1
 Range = 10,000

Let’s write that a different way:

104

We see a 10 (the number of digits) and a 4 (the number of boxes). Is this a
coincidence?

 No. It’s a property of how we write numbers.

12/28/15	

6	

Positional Number Systems
This is what we learned in grade school.

There is a ones’ place and a tens’ place and a hundreds’ place … etc.

We call this a positional number system because the position of each digit tells
us the magnitude of the value.
Each position is a higher exponent on a base. In daily life, we typically use
base 10, also known as decimal.

1 5 2 3

1 × 103 + 5 × 102 + 2 × 101 + 3 × 100
1000s 100s 10s 1s

Do Other Bases Make Sense?
Can we still have a positional number system with a base other than 10?

Yes. Any number can be a base, but for our purposes some are more useful than
others.

Base 2 – Binary
Base 8 – Octal

Base 16 – Hexadecimal

12/28/15	

7	

Base 2: Binary
When we have a base N, the allowable digits are [0,N-1].

So for base 2, we only use 0 and 1.

A binary digit is known as a bit (a contraction of binary digit).

Decimal Binary Decimal Binary
0 0 8 1000
1 1 9 1001
2 10 10 1010
3 11 11 1011
4 100 12 1100
5 101 13 1101
6 110 14 1110
7 111 15 1111

Binary addition
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0, carry = 1

Examples
101 + 0 = 101
111 + 10 = 1001
1011 + 11 = 1110

Bits, Nibbles, and Bytes
Each 0 or 1 in a binary “string” is a bit. It is designated with a lowercase b.

•  Binary strings of length 4 are called a nibble (or nybble).
•  Binary strings of length 8 are called a byte. Designated with a B.
•  Bytes aggregated into groups called words. Word size can vary depending on

the computer architecture. Often a word will be 16, 32 or 64 bits (2, 4, 8 bytes).

Oftentimes, the byte is the element that can hold one character of text in English.

The byte is usually the smallest addressable memory element on a machine.

The size of a byte being 8 bits was not common until the 1970s and the term octet
was sometimes used to avoid confusion.

12/28/15	

8	

Binary to Decimal Conversion

1 0 0 1 0 0 1 1 0 1
512 256 128 64 32 16 8 4 2 1
29 28 27 26 25 24 23 22 21 20

Take each position that has a 1 in it and add up the corresponding powers of two:

512 + 64 + 8 + 4 + 1 = 589

Quick Sanity Check: If the ones’ place (20) is 1, then the number must be odd!

What is decimal value for 1001001101b?

Decimal to Binary Conversion
For a decimal input called value:

1.  Start: Find the biggest power of 2 smaller than value
2.  if value/(that power) == 1

a)  Output a “1”
b)  Subtract that power from value and store back in value

3.  Else
a)  Output a “0”

4.  Move to the next smaller power of 2
5.  Go to 2 while we haven’t done the one’s place

12/28/15	

9	

Decimal to Binary Example
Input value: 75

Start: Largest power of 2 less than 75? 64

Divide* New value Next power Output
75 / 64 = 1 75-64=11 32 1
11 / 32 = 0 11 16 0
11 / 16 = 0 11 8 0
11 / 8 = 1 11-8=3 4 1
3 / 4 = 0 3 2 0
3 / 2 = 1 3-2=1 1 1
1 / 1 = 1 1-1=0 0 (done) 1

Result: 1001011
Check yourself: 26 + 23 + 21 + 20 = 64 + 8 + 2 + 1 = 75 (it worked! yea!)

* integer division

64s
32s
16s
8s
4s
2s
1s

Base 8: Octal
Bit strings can be very long and sometimes we wish to compactly represent, while
easily converting in and out of binary.

Octal is base 8.

The valid digits are then [0,7]

Every 3 bits can be represented with one octal digit.

Programming languages usually denote octal literals with a leading 0 prefix.

12/28/15	

10	

Base 16: Hexadecimal
More common is base 16, called hexadecimal or just “hex” for short.

 Every sequence of 4 bits is represented with a single hexadecimal digit.
 Thus, 32-bit numbers are compactly displayed in 8 hex digits.

Each digit ranges from [0, 15??]

 Cannot use 2 digits for one as that will destroy positional number.
 We need new “digits” for 10, 11, 12, 13, 14, and 15.

Solution? Use letters: A, B, C, D, E, F.

 Range is [0,F] i.e., 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Counting in the Bases
Decimal Binary Octal Hex Decimal Binary Octal Hex

0 0000 0 0 8 1000 10 8
1 0001 1 1 9 1001 11 9
2 0010 2 2 10 1010 12 A
3 0011 3 3 11 1011 13 B
4 0100 4 4 12 1100 14 C
5 0101 5 5 13 1101 15 D
6 0110 6 6 14 1110 16 E
7 0111 7 7 15 1111 17 F

Can you convert 0x7E1 to binary?
And then to decimal?

12/28/15	

11	

Um, so why binary?
Digital computers are built around “switches” (transistors)

–  Switch has “on” and “off” state

Really, it’s about Boolean logic.
–  Your new best friends: AND, OR, NOT
–  Computation (circuit) defined as functions of these operations
–  Boolean logic has two values: True, False

Hmm. A switch is “on” or “off”. Two values in logic. T, F. Binary is 0, 1.

–  Light bulb moment! Since Boolean logic has two values, processing is
built around logic functions, then naturally, we use binary…

Note: It’s quite possible to build a processor in other bases. Analog computing!

Components of a Computer

input/output CPU

memory

storage

12/28/15	

12	

Running a Program

input/output CPU

memory

storage

program
image

data
file

Running a Program

input/output CPU

memory

storage

program
instructions

program
image

data
file

12/28/15	

13	

Running a Program

input/output CPU

memory

storage

program
instructions

program
image

instruction data
file

Running a Program

input/output CPU

memory

storage

program
instructions

program
image

instruction

little data

data
file

12/28/15	

14	

Running a Program

input/output CPU

memory

storage

program
instructions

data

program
image

instruction

little data

data
file

Running a Program

input/output CPU

memory

storage

program
instructions

data

program
image

data
file

instruction

little data

12/28/15	

15	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

A Day in the Life of a C (Java) Program

hello.c

compiler

hello.s

assembler

hello.o

linker

crt0.o

hello

loader

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Assembly Language, Machine Code

High-level programming languages are a convenience
§  CPU does not “understand” the high-level language!

CPU understands “binary numbers”
§  Binary number represents a command
§  A command makes CPU take some action (e.g., addition)
§  Commands known as “machine instructions” (code)

Who wants to program in binary numbers???
§  Assembly language is convenience
§  Programming in machine instructions

12/28/15	

16	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Assembling, Loading, Running

§  Assembly language program is assembled
•  Assembler is tool to create machine code from assembly language

§  Assembled program placed in main memory
•  Loader is tool to put the machine instructions into memory
•  Loader is automatically used when you run the program

§  CPU gets access to machine instructions in memory
§  CPU does the command for each instruction

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

assembled

loaded

0
4
8
12
16
20
24
 machine code
address

12/28/15	

17	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

assembled

loaded

0
4
8
12
16
20
24

address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

fetch 0
4
8
12
16
20
24

Processor accesses instructions only through memory

address

12/28/15	

18	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

execute
01284820

0
4
8
12
16
20
24

address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

fetch
0
4
8
12
16
20
24

address

12/28/15	

19	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

execute
21080001

0
4
8
12
16
20
24

address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

fetch

0
4
8
12
16
20
24

address

12/28/15	

20	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

execute
290a000a

0
4
8
12
16
20
24

address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

fetch

0
4
8
12
16
20
24

address

12/28/15	

21	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

execute
01540fffc

0
4
8
12
16
20
24

address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

fetch 0
4
8
12
16
20
24

address

12/28/15	

22	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor accesses instructions only through memory

Assembling, Loading, Running
loop: add $t1,$t1,$t0

 addi $t0,$t0,1
 slti $t2,$t0,10
 bne $t2,$0,loop

01284820
21080001
290a000a
01540fffc

...
01284820
21080001
290a000a
01540fffc
...

assembly language machine code

memory

execute
01284820

0
4
8
12
16
20
24

address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Instruction set architecture
§  ISA is a programmer interface to the hardware
§  Programmer’s Reference Manual (PRM) discloses ISA
§  Different implementations of the same ISA
§  “Architecture” == ISA, “Microarchitecture” == Implementation

§  You are a system software programmer
§  Components of ISA in PRM

•  Data types the processor supports
•  Registers and their usage
•  Instructions and their definitions
•  Processor modes
•  Exception mechanism
•  (Compatibility issues)

Hardware

System software

Application
software

Instruction set
architecture

12/28/15	

23	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Register

§  It’s storage in your processor that you can directly address
and access in an instruction

§  If your processor is 32-bit, your registers are (usually) 32 bits
wide

§  Depending on the processor, there can be many registers or
only a few of those
•  Registers were a scare resource – they occupy chip space
•  Today we can put many registers; the concern is the access time and

the power consumption

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Instruction

§  Unit of program execution; program consists of instructions
§  Describes an operation that the processor understands how to

perform

§  The amount of work defined for an instruction is usually small
•  Add two numbers in registers (add $t0,$t1,$t2)
•  Compare two numbers in registers (slt $t0,$t1,$t2)
•  Make a jump in the program if the first number is smaller than the second

number

§  Complex instructions may ease your programming…
•  For example, “multiply two numbers from memory location A & B and iterate this

100 times or until you meet two zeros”
•  BUT, your processor implementation can become quite complex (slow!)

12/28/15	

24	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Processor modes

§  “User mode”
•  Ordinary programs run in this mode
•  Most instructions can be executed in this mode (e.g., add, load)
•  Critical system resources are not directly accessed
•  What about other users’ programs?

§  “Privileged mode”
•  System software runs in this mode
•  Some instructions can be executed only in this mode
•  Critical system resources managed by the system software (i.e., OS)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Switching between modes

§  When powered on, a processor will be in its privileged mode

§  When the system boots up and becomes initialized, the
system starts to execute user programs or interact with the
user

§  The processor switches back and forth between the modes
when
•  There is an exception

"   E.g., Divide-by-zero, access something invalid
"   Program needs help from operating system

•  There is an interrupt from input/output
"   Clock interrupt (possibly causing another program to run)
"   Keyboard & mouse

12/28/15	

25	

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Time to learn MIPS!

