
7

• Simplified implementation of MIPS with:

– memory-reference: lw, sw

– arithmetic-logical: add, sub, and, or, slt

– control flow: beq, j

• Generic Implementation (Fetch + Execute):

– use PC register to supply instruction address

– read the instruction from memory at PC

– read the registers specified by instruction

– use instruction opcode to decide what to do

• All instructions (except one!) need to use an ALU
after reading the registers. Why? E.g., memory-
reference? arithmetic? control flow?

The Processor: Datapath & Control

8

• Abstract / Simplified View:

Two types of functional units:

– elements that operate on data values
(combinational)

– elements that contain state (sequential)

Single Cycle Implementation Details

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

9

Our Implementation - Edge triggered

• Typical execution:

– read contents of some state elements

– send values through some combinational logic

– write results to one or more state elements

Clock cycle

State

element

1

Combinational logic

State

element

2

Clock cycleRead Comb. Write

10

• Abstract / Simplified View:

A Single Cycle Implementation

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

“Start” of cycle: READ

the IM to fetch an instr.
“Start” of cycle: READ the

register file (src operands)

11

• Abstract / Simplified View:

A Single Cycle Implementation

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

“Middle” of

cycle: EXECUTE
“Middle” of cycle:

EXECUTE

(lw – read memory)

12

• Abstract / Simplified View:

A Single Cycle Implementation

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

“End” of cycle: WRITE

(sw – update memory)

“End” of cycle: WRITE to

the register file (arithmetic

and lw)

13

Building a Data path: Start with Fetch

• Components to execute each class of instruction

Fetch components

• Program counter - tracks address of instruction

• Instruction memory - memory from which we fetch an
instruction to execute

• Adder - does increment of PC by 4, labeled as “add”

PC

Instruction

memory

Instruction

address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

14

Fetching Instructions

• Fetch - get instruction from memory

Send address from PC to the

instruction memory to read the

instruction at IM[PC]

Increment PC by four after

reading current instruction -

by four since an instruction

is 32 bits long

Instruction read from the

memory - send to rest of

the data path

15

Accessing Registers

• After fetching, we need to get source operands for
the instruction - read the register file

• Register file - collection of registers that can be read
or written by specifying register number

Address of the register

to read - we need to read

two registers, so there are

two “read ports”

For a write, we need to

send only one destination

register (number) and the

data (one “write port”)

Data read from the

register file

Whether this access is a

read or a write operation

16

Executing the Instruction

• For an arithmetic instruction, once we have the
operands, we need to execute it with the ALU

Two source operand

inputs (e.g., read from the

register file for R-type)

What kind of operation the ALU

is going to do for an instruction

The result of the operation done

on the ALU

Includes “zero” detection -

whether the output is zero

17

R-type Instructions (Arithmetic) Data Path

• From register file and ALU, we can create the data
path for arithmetic instructions

• Connect read outputs from register file to ALU

• Connect ALU output to register file write data input

Register numbers

come from the fixed

fields in the

instruction

Output from the ALU fed back to the register

file write data input

18

How ‘bout Load and Store?

• Recall load and store:

– lw $t1,0($t2)

– sw $t1,12($t2)

• Effective address - the address from which we will
load or store a value

– Formed by adding offset_value + $basereg

• offset_value is a 16-bit immediate (constant)

– we add on 32-bit values (using the ALU!)

– need to “sign extend” the value

19

Elements for Load and Store

• Data memory element - holds program data

Address of the item to

read/write from/to memory

for a load/store

Data value to write to

memory for a store
Access to the memory is a read

operation - use address to locate

value and send it to the output

Access to the memory is a write

operation - use address to locate

place in memory and write the

new value in that place

Data read from the

memory

20

Elements for Load and Store

• Sign extend - replicate the sign (msb) of the
immediate offset in the top 16 bits of the 32 bit input
to the adder (for forming the effective address)

16-bit input from the immediate field of

the load or store instruction

32-bit sign extended output (going to

the ALU for the E.A. addition)

e.g.,16-bit offset -104 is 0xFF98

sign_ext(0xFF98) = 0xFFFFFF98

21

Data path for Load and Store

• Combine the register file, sign extend, ALU, and the
data memory

Immediate from the instruction

Value of the load or

store base register

Effective address

Value read from

memory (load)

Value written

to destination

register (load)

Value to write

to memory (store)

22

OK, now, what about branches?

• Recall that the branches are:

– beq $t1,$t2,label Branch to “label” if $t1 == $t2

– bne $t1,$t2,label Branch to “label” if $t1 != $t2

• So, we have:

– 2 register source operands

– a 16-bit offset (PC-relative)

– ALU to do comparison (remember zero check?)

• When branch taken, PC is set to (PC+4) + (offset<<2)

23

More about branches

• For PC-relative branches on MIPS,

– the “base value” is actually the PC + 4

– the offset is also shifted left by 2 (word aligned)

• PC + 4 value is available after we increment the PC to
fetch the next instruction

• Wait a minute….

– We need to compute the target address

– AND

– use the ALU to compare $t1 and $t2

• What do we do????

24

Branch Elements

• A second adder - does target address calculation

• Shifter - shift offset by 2

• A way to set the PC to the branch target address if
the branch is actually taken (“taken vs. not taken”)

Should we take the branch?

Zero means two values equal

Computed branch target

PC + 4 for next instruction

Does subtract for comparison

25

Jumps

• Recall that jump is:

– j label

– label is a 26 bit value

• Simply replaces PC with

– 26 bit immediate shifted left by 2

– PC=PC[31..28] . (Imm26<<2)

